Skip to content
1900

Ultra-fast Green Hydrogen Production from Municipal Wastewater by an Integrated Forward Osmosis-alkaline Water Electrolysis System

Abstract

Recent advancements in membrane-assisted seawater electrolysis powered by renewable energy offer a sustainable path to green hydrogen production. However, its large-scale implementation faces challenges due to slow powerto-hydrogen (P2H) conversion rates. Here we report a modular forward osmosis-water splitting (FOWS) system that integrates a thin-film composite FO membrane for water extraction with alkaline water electrolysis (AWE), denoted as FOWSAWE. This system generates high-purity hydrogen directly from wastewater at a rate of 448 Nm3 day−1 m−2 of membrane area, over 14 times faster than the state-of-the-art practice, with specific energy consumption as low as 3.96 kWh Nm−3 . The rapid hydrogen production rate results from the utilisation of 1 M potassium hydroxide as a draw solution to extract water from wastewater, and as the electrolyte of AWE to split water and produce hydrogen. The current system enables this through the use of a potassium hydroxide-tolerant and hydrophilic FO membrane. The established waterhydrogen balance model can be applied to design modular FO and AWE units to meet demands at various scales, from households to cities, and from different water sources. The FOWSAWE system is a sustainable and an economical approach for producing hydrogen at a record-high rate directly from wastewater, marking a significant leap in P2H practice.

Related subjects: Production & Supply Chain
Loading

Article metrics loading...

/content/journal7491
2024-03-23
2025-12-05
/content/journal7491
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test