Skip to content
1900

Experimental and Numerical Research on Temperature Evolution during the Fast-Filling Process of a Type III Hydrogen Tank

Abstract

The temperature rises hydrogen tanks during the fast-filling process could threaten the safety of the hydrogen fuel cell vehicle. In this paper, a 2D axisymmetric model of a type III hydrogen for the bus was built to investigate the temperature evolution during the fast-filling process. A test rig was carried out to validate the numerical model with air. It was found significant temperature rise occurred during the filling process, despite the temperature of the filling air being cooled down due to the throttling effect. After verification, the 2D model of the hydrogen tank was employed to study the temperature distribution and evolution of hydrogen during the fast-filling process. Thermal stratification was observed along the axial direction of the tank. Then, the effects of filling parameters were examined, and a formula was fitted to predict the final temperature based on the simulated results. At last, an effort was paid on trying the improve the temperature distribution by increasing the injector length of the hydrogen tank. The results showed the maximal temperature and mass averaged temperature decreased by 2 K and 3.4 K with the length of the injector increased from 50 mm to 250 mm.

Funding source: This paper is supported by Inner Mongolia Major Science and Technology Major Project: 2020ZD0022.
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal7512
2022-05-22
2025-12-05
/content/journal7512
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test