Robust Operation of Electric–Heat–Gas Integrated Energy Systems Considering Multiple Uncertainties and Hydrogen Energy System Heat Recovery
Abstract
Due to the high cost of hydrogen utilization and the uncertainties in renewable energy generation and load demand, significant challenges are posed for the operation optimization of hydrogen-containing integrated energy systems (IESs). In this study, a robust operational model for an electric–heat–gas IES (EHG-IES) is proposed, considering the hydrogen energy system heat recovery (HESHR) and multiple uncertainties. Firstly, a heat recovery model for the hydrogen system is established based on thermodynamic equations and reaction principles; secondly, through the constructed adjustable robust optimization (ARO) model, the optimal solution of the system under the worst-case scenario is obtained; lastly, the original problem is decomposed based on the column and constraint generation method and strong duality theory, resulting in the formulation of a master problem and subproblem with mixed-integer linear characteristics. These problems are solved through alternating iterations, ultimately obtaining the corresponding optimal scheduling scheme. The simulation results demonstrate that our model and method can effectively reduce the operation and maintenance costs of HESHR-EHG-IES while being resilient to uncertainties on both the supply and demand sides. In summary, this study provides a novel approach for the diversified utilization and flexible operation of energy in HESHR-EHG-IES, contributing to the safe, controllable, and economically efficient development of the energy market. It holds significant value for engineering practice.