Skip to content
1900

Robust Operation of Electric–Heat–Gas Integrated Energy Systems Considering Multiple Uncertainties and Hydrogen Energy System Heat Recovery

Abstract

Due to the high cost of hydrogen utilization and the uncertainties in renewable energy generation and load demand, significant challenges are posed for the operation optimization of hydrogen-containing integrated energy systems (IESs). In this study, a robust operational model for an electric–heat–gas IES (EHG-IES) is proposed, considering the hydrogen energy system heat recovery (HESHR) and multiple uncertainties. Firstly, a heat recovery model for the hydrogen system is established based on thermodynamic equations and reaction principles; secondly, through the constructed adjustable robust optimization (ARO) model, the optimal solution of the system under the worst-case scenario is obtained; lastly, the original problem is decomposed based on the column and constraint generation method and strong duality theory, resulting in the formulation of a master problem and subproblem with mixed-integer linear characteristics. These problems are solved through alternating iterations, ultimately obtaining the corresponding optimal scheduling scheme. The simulation results demonstrate that our model and method can effectively reduce the operation and maintenance costs of HESHR-EHG-IES while being resilient to uncertainties on both the supply and demand sides. In summary, this study provides a novel approach for the diversified utilization and flexible operation of energy in HESHR-EHG-IES, contributing to the safe, controllable, and economically efficient development of the energy market. It holds significant value for engineering practice.

Funding source: This work was supported in part by Sponsored by the National Natural Science Foundation of China (Grant Nos. 52266018), Xinjiang Tianshan talent youth science and technology top notch talent project (2022TSYCCX0051).
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal7563
2025-08-18
2025-12-05
/content/journal7563
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test