Grid Frequency Fluctuation Compensation by Using Electrolysis: Literature Survey
Abstract
This paper presents a novel literature survey on leveraging electrolysis for grid frequency stabilization in power systems with high penetration of renewable energy sources (RESs), uniquely integrating global research findings with specific insights into the Polish energy context—a region facing acute grid challenges due to rapid RES growth and infrastructure limitations. The intermittent nature of wind and solar power exacerbates frequency fluctuations, necessitating dynamic demand-side management solutions like hydrogen production via electrolysis. By synthesizing over 30 studies, the survey reveals key results: electrolysis systems, particularly PEM and alkaline electrolyzers, can reduce frequency deviations by up to 50% through fast frequency response (FFR) and primary reserve provision, as demonstrated in simulations and real-world pilots (e.g., in France and the Netherlands); however, economic viability requires enhanced compensation schemes, with current models showing unprofitability without subsidies. Technological advancements, such as transistor-based rectifiers, improve efficiency under partial loads, while integration with RES farms mitigates overproduction issues, as evidenced by Polish cases where 44 GWh of solar energy was curtailed in March 2024. The survey contributes actionable insights for policymakers and engineers, including recommendations for deploying electrolyzers to enhance grid resilience, support hydrogen-based transportation, and facilitate Poland’s target of 50.1% RESs by 2030, thereby advancing the green energy transition amid rising instability risks like blackouts in RES-heavy systems.