Skip to content
1900

Biogeochemical Interactions and Their Role in European Underground Hydrogen Storage

Abstract

Integrating renewable energy requires robust, large-scale storage solutions to balance intermittent supply. Underground hydrogen storage (UHS) in geological formations, such as salt caverns, depleted hydrocarbon reservoirs, or aquifers, offers a promising way to store large volumes of energy for seasonal periods. This review focuses on the biological aspects of UHS, examining the biogeochemical interactions between H2, reservoir minerals, and key hydrogenotrophic microorganisms such as sulfate-reducing bacteria, methanogens, acetogens, and iron-reducing bacteria within the gas–liquid–rock–microorganism system. These microbial groups use H2 as an electron donor, triggering biogeochemical reactions that can affect storage efficiency through gas loss and mineral dissolution–precipitation cycles. This review discusses their metabolic pathways and the geochemical interactions driven by microbial byproducts such as H2S, CH4, acetate, and Fe2+ and considers biofilm formation by microbial consortia, which can further change the petrophysical reservoir properties. In addition, the review maps 76 ongoing European projects focused on UHS, showing 71% target salt caverns, 22% depleted hydrocarbon reservoirs, and 7% aquifers, with emphasis on potential biogeochemical interactions. It also identifies key knowledge gaps, including the lack of in situ kinetic data, limited field-scale monitoring of microbial activity, and insufficient understanding of mineral–microbe interactions that may affect gas purity. Finally, the review highlights the need to study microbial adaptation over time and the influence of mineralogy on tolerance thresholds. By analyzing these processes across different geological settings and integrating findings from European research initiatives, this work evaluates the impact of microbial and geochemical factors on the safety, efficiency, and long-term performance of UHS.

Funding source: This research was funded by the project HyDRA-Diagnostic Tools and Risk Protocols to Accelerate UHS (project no. 101192337) and co-funded by European Union and supported by Clean Hydrogen Partnership and its members and by the Centre for Sustainable Subsurface Resources (project no. 331841), funded by the Research Council of Norway.
Countries: Norway
Loading

Article metrics loading...

/content/journal7633
2025-09-01
2025-12-05
/content/journal7633
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test