Numerical Investigation of Hydrogen Production via Methane Steam Reforming in Tubular Packed Bed Reactors Integrated with Annular Metal Foam Gas Channels
Abstract
Methane steam reforming is the most widely adopted hydrogen production technology. To address the challenges associated with the large radial thermal resistance and low mass transfer rates inherent in the tubular packed bed reactors during the MSR process, this study proposes a structural design optimization that integrates annular metal foam gas channels along the inner wall of the reforming tubes. Utilizing multi-physics simulation methods and taking the conventional tubular reactor as a baseline, a comparative analysis was performed on physical parameters that characterize flow behavior, heat transfer, and reaction in the reforming process. The integration of the annular channels induces a radially non-uniform distribution of flow resistance in the tubes. Since the metal foam exhibits lower resistance, the fluid preferentially flows through the annular channels, leading to a diversion effect that enhances both convective heat transfer and mass transfer. The diversion effect redirects the central flow toward the near-wall region, where the higher reactant concentration promotes the reaction. Additionally, the higher thermal conductivity of the metal foam strengthens radial heat transfer, further accelerating the reaction. The effects of operating parameters on performance were also investigated. While a higher inlet velocity tends to hinder the reaction, in tubes integrated with annular channels, it enhances the diversion effect and convective heat transfer. This offsets the adverse impact, maintaining high methane conversion with lower pressure drop and thermal resistance than the conventional tubular reactor does.