Skip to content
1900

Degradation Mechanisms of a Proton Exchange Membrane Water Electrolyzer Stack Operating at High Current Densities

Abstract

On the path to an emission free energy economy, proton exchange membrane water electrolysis (PEMWE) is a promising technology for a sustainable production of green hydrogen at high current densities and thus high production rates. Long lifetime, increasing the current density and the reduction of platinum group metal loadings are major challenges for a widespread implementation of PEMWE. In this context, this work investigates the aging of a PEMWE stack operating at 4 A cm-2 , which is twice the nominal current density of commercial electrolyzers. Specifically, an 8-cells PEMWE stack using catalyst coated membranes (CCMs) with different platinum group metal (PGM) loading was operated for 2200 h. To understand degradation phenomena, physical ex-situ analyses, such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), were carried out. The same aging mechanism were observed in all cells, independent on their position in stack or the specific PGM loading of the membrane electrode assembly (CCM): (i) a decrease of ohmic resistance over time related to membrane thinning, (ii) a significant loss of ionomer at anodes, (iii) loss of noble metal from the electrodes leading to deposition of small Ir and Pt concentrations in the membrane, (iv) heterogeneous enrichment of Ti on the cathode side likely originating from the cathode-side of the Ti bipolar plates (BPPs). These results are in good agreement with the electrochemical performance loss. Thus, we were able to identify the degradation phenomena that dominate under high-current operation and their impact on performance.

Related subjects: Production & Supply Chain
Countries: Germany
Loading

Article metrics loading...

/content/journal7680
2025-09-15
2025-12-05
/content/journal7680
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test