Skip to content
1900

The Energy Management Strategies for Fuel Cell Electric Vehicles: An Overview and Future Directions

Abstract

The rapid development of fuel cell electric vehicles (FCEVs) has highlighted the critical importance of optimizing energy management strategies to improve vehicle performance, energy efficiency, durability, and reduce hydrogen consumption and operational costs. However, existing approaches often face limitations in real-time applicability, adaptability to varying driving conditions, and computational efficiency. This paper aims to provide a comprehensive review of the current state of FCEV energy management strategies, systematically classifying methods and evaluating their technical principles, advantages, and practical limitations. Key techniques, including optimization-based methods (dynamic programming, model predictive control) and machine learning-based approaches (reinforcement learning, deep neural networks), are analyzed and compared in terms of energy distribution efficiency, computational demand, system complexity, and real-time performance. The review also addresses emerging technologies such as artificial intelligence, vehicle-to-everything (V2X) communication, and multi-energy collaborative control. The outcomes highlight the main bottlenecks in current strategies, their engineering applicability, and potential for improvement. This study provides theoretical guidance and practical reference for the design, implementation, and advancement of intelligent and adaptive energy management systems in FCEVs, contributing to the broader goal of efficient and low-carbon vehicle operation.

Funding source: This project is supported by the Shandong Province Natural Science Foundation (Grant No. ZR2023QF134). Weifang University Doctoral Research Start-up Fund (2023BS29).
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal7708
2025-09-22
2025-12-05
/content/journal7708
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test