Skip to content
1900

Synergistic Coupling of Waste Heat and Power to Gas via PEM Electrolysis for District Heating Applications

Abstract

This work explores the integration of Proton Exchange Membrane (PEM) electrolysis waste heat with district heating networks (DHN), aiming to enhance the overall energy efficiency and economic viability of hydrogen production systems. PEM electrolysers generate substantial amounts of low-temperature waste heat during operation, which is often dissipated and left unutilised. By recovering such thermal energy and selling it to district heating systems, a synergistic energy pathway that supports both green hydrogen production and sustainable urban heating can be achieved. The study investigates how the electrolyser’s operating temperature, ranging between 50 and 80 ◦C, influences both hydrogen production and thermal energy availability, exploring trade-offs between electrical efficiency and heat recovery potential. Furthermore, the study evaluates the compatibility of the recovered heat with common heat emission systems such as radiators, fan coils, and radiant floors. Results indicate that valorising waste heat can enhance the overall system performance by reducing the electrolyser’s specific energy consumption and its levelized cost of hydrogen (LCOH) while supplying carbon-free thermal energy for the end users. This integrated approach contributes to the broader goal of sector coupling, offering a pathway toward more resilient, flexible, and resource-efficient energy systems.

Related subjects: Production & Supply Chain
Countries: Italy
Loading

Article metrics loading...

/content/journal7738
2025-09-30
2025-12-05
/content/journal7738
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test