Skip to content
1900

A Capacity Expansion Model of Hydrogen Energy Storage for Urban-Scale Power Systems: A Case Study in Shanghai

Abstract

With the increasing maturity of renewable energy technologies and the pressing need to address climate change, urban power systems are striving to integrate a higher proportion of low-carbon renewable energy sources. However, the inherent variability and intermittency of wind and solar power pose significant challenges to the stability and reliability of urban power grids. Existing research has primarily focused on short-term energy storage solutions or small-scale integrated energy systems, which are insufficient to address the long-term, large-scale energy storage needs of urban areas with high renewable energy penetration. This paper proposes a mid-to-long-term capacity expansion model for hydrogen energy storage in urban-scale power systems, using Shanghai as a case study. The model employs mixed-integer linear programming (MILP) to optimize the generation portfolios from the present to 2060 under two scenarios: with and without hydrogen storage. The results demonstrate that by 2060, the installed capacity of hydrogen electrolyzers could reach 21.5 GW, and the installed capacity of hydrogen power generators could reach 27.5 GW, accounting for 30% of the total installed capacity excluding their own. Compared to the base scenario, the electricity–hydrogen collaborative energy supply system increases renewable penetration by 11.6% and utilization by 12.9% while reducing the levelized cost of urban comprehensive electricity (LCOUCE) by 2.514 cents/kWh. These findings highlight the technical feasibility and economic advantages of deploying long-term hydrogen storage in urban grids, providing a scalable solution to enhance the stability and efficiency of high-renewable urban power systems.

Funding source: This research is supported by the Science and Technology Project of the State Grid Corporation of China (B3090R240001).
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal7740
2025-09-29
2025-12-05
/content/journal7740
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test