Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating
Abstract
Switch-point heating systems are essential for railway reliability and safety in winter, but present logistical and economic challenges in remote regions. This study presents a novel application of a hydrogen-enabled microgrid as an off-grid energy solution for powering a switch-point heating system at a rural Austrian railway station, offering an alternative to conventional grid-based electricity with a specific focus on enhancing the share of renewable energy sources. The proposed system integrates photovoltaics (PV), optional wind energy, and hydrogen storage to address the seasonal mismatch between a high energy supply in the summer and peak winter demand. Three energy supply scenarios are analysed and compared based on local conditions, technical simplicity, and economic viability. Energy flow modelling based on site-specific climate and operational data is used to determine hydrogen production rates, storage capacity requirements and system sizing. A comprehensive cost analysis of all major subsystems is conducted to assess economic viability. The study demonstrates that hydrogen is a highly effective solution for seasonal energy storage, with a PV-only configuration emerging as the most suitable option under current site conditions. Thus, it offers a replicable framework for decarbonising critical stationary railway infrastructure.