Theoretical Thermal Management Concepts of Recovery Heat Waste in Solid Oxide Fuel Cell System
Abstract
Solid oxide electrolysis cells (SOEC) system has potential to offer an efficient green hydrogen production technology. However, the significant cost of this technology is related to the high operating temperatures, materials and thermal management including the waste heat. Recovering the waste heat can be conducted through techniques to reduce the overall energy consumption. This approach aims to improve accuracy and efficiency by recovering and reusing the heat that would otherwise be lost. In this paper, thermal energy models are proposed based on waste heat recovery methodologies to utilize the heat from outlet fluids within the SOEC system. The mathematical methods for calculating thermal energy and energy transfer in SOEC systems have involved the principles of heat transfer. To address this, different simplified thermal models are developed in Simulink Matlab R2025b. The obtained results for estimating proper thermal energy for heating incoming fluids and recycled heat are discussed and compared to determine the efficient and potential thermal model for improvement the waste heat recovery.