Skip to content
1900

Sustainable-green Hydrogen Production through Integrating Electrolysis, Water Treatment and Solar Energy

Abstract

The growing interest in hydrogen as an alternative fuel has stimulated research into methods that enable the global shift to sustainable, green energy. One promising pathway is the production of green hydrogen via electrolysis, particularly when coupled with renewable energy sources like solar power. Integrating a proton exchange membrane (PEM) electrolyzer with solar energy can aid this transition. Using treated sewage effluent, instead of deionized water, can make the process more economical and sustainable. Thus, the objective of this research is to demonstrate that an integrated electrolysis-water treatmentsolar energy system can be a viable candidate for producing green hydrogen in a sustainable manner. This study assesses different combinations of water pretreatment (RO and UF) and solar energy input (PV, ST, and PTC), evaluating their techno-economic feasibility, efficiencies, environmental impact, and sustainability. The study shows that CSP scenarios have the highest CAPEX, roughly fourfold that of PV cases and sevenfold that of national grid cases. Using solar energy sources like PV, ST, and PTC results in high material efficiency (94.87%) and environmental efficiency (98.34%), while also reducing CO2 emissions by approximately 88% compared to the national grid. The process’s economic sustainability averages 57%, but it could reach 90% if hydrogen production costs fall to $2.08-$2.27 per kg. The outcome of this study is to provide a green hydrogen production pathway that is technically feasible, environmentally sustainable, and economically viable.

Funding source: The authors acknowledge the paper was made possible by grant QUHI-CENG-22/ 23–465 from Qatar University. The statements made herein are solely the responsibility of the author[s]. Open Access funding provided by the Qatar National Library.
Related subjects: Production & Supply Chain
Countries: Qatar
Loading

Article metrics loading...

/content/journal7844
2025-07-21
2025-12-05
/content/journal7844
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test