Feasibility of Using Rainwater for Hydrogen Production via Electrolysis: Experimental Evaluation and Ionic Analysis
Abstract
This study evaluates the feasibility of employing rainwater as an alternative feedstock for hydrogen production via electrolysis. While conventional systems typically rely on high-purity water—such as deionized or distilled variants—these can be cost-prohibitive and environmentally intensive. Rainwater, being naturally available and minimally treated, presents a potential sustainable alternative. In this work, a series of comparative experiments was conducted using a proton exchange membrane electrolyzer system operating with both deionized water and rainwater collected from different Austrian locations. The chemical composition of rainwater samples was assessed through inductively coupled plasma, ion chromatography and visual rapid tests to identify impurities and ionic profiles. The electrolyzer’s performance was evaluated under equivalent operating conditions. Results indicate that rainwater, in some cases, yielded comparable or marginally superior efficiency compared to deionized water, attributed to its inherent ionic content. The study also examines the operational risks linked to trace contaminants and explores possible strategies for their mitigation.