Skip to content
1900

An Innovative Industrial Complex for Sustainable Hydrocarbon Production with Near-Zero Emissions

Abstract

The Allam power cycle is a groundbreaking elevated-pressure power generation unit that utilizes oxygen and fossil fuels to generate low-cost electricity while capturing carbon dioxide (CO2) inherently. In this project, we utilize the CO2 generated from the Allam cycle as feedstock for a newly envisioned industrial complex dedicated to producing renewable hydrocarbons. The industrial complex (FAAR) comprises four subsystems: (i) a Fischer–Tropsch synthesis plant (FTSP), (ii) an alkaline water electrolysis plant (AWEP), (iii) an Allam power cycle plant (APCP), and (iv) a reverse water-gas shift plant (RWGSP). Through effective material, heat, and power integration, the FAAR complex, utilizing 57.1% renewable energy for its electricity needs, can poly-generate sustainable hydrocarbons (C1–C30), pure hydrogen, and oxygen with near-zero emissions from natural gas and water. Economic analysis indicates strong financial performance of the development, with an internal rate of return (IRR) of 18%, a discounted payback period of 8.7 years, and a profitability index of 2.39. The complex has been validated through rigorous modeling and simulation using Aspen Plus version 14, including sensitivity analysis.

Funding source: This work was supported in part by the Texas Hazardous Waste Research Center (THWRC) and the Texas Air Research Center (TARC), both headquarters at Lamar University in Beaumont, Texas.
Related subjects: Production & Supply Chain
Countries: United States
Loading

Article metrics loading...

/content/journal7985
2025-10-23
2025-12-05
/content/journal7985
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test