Techno-Economic Optimization of Hybrid Renewable Energy Systems (HRESs) and Feasibility Study on Replacing Diesel and Photovoltaic Systems with Hydrogen for Electrical and Small Deferrable Loads: Case Study of Cameroon
Abstract
To reduce the amount of harmful gases produced by fossil fuels, more environmentally friendly and sustainable alternatives are being proposed around the world. As a result, technologies for manufacturing hydrogen fuel cells and producing green hydrogen are becoming more widespread, with an impact on energy production and environmental protection. In many countries around the world, and in Africa in particular, leaders, scientists, and populations are considering switching from fossil fuels to so-called green energies. Hydrogen is therefore an interesting alternative that deserves to be explored, especially since both rural and urban populations have shown an interest in using it in the near future, which would reduce pollution and the proliferation of greenhouse gases, thereby mitigating global warming. The aim of this paper is to determine the hybrid energy system best suited to addressing the energy problem in the study area, and then to make successive substitutions of different energy sources, starting with the most polluting, in order to assess the possibilities for transitioning the energy used in the area to green hydrogen. To this end, this study began with a technical and economic analysis which, based on climatic parameters, led to the proposal of a PV/DG-BATTery system configuration, with a Net Present Cost (NPC) of USD 19,267 and an average Cost Of Energy (COE) of USD 0.4, and with a high proportion of CO2 emissions compared with the PV/H2GEN-BATT and H2GEN systems. The results of replacing fossil fuel generators with hydrogen generators are beneficial in terms of environmental protection and lead to a reduction in energy-related expenses of around 2.1 times the cost of diesel and a reduction in mass of around 2.7 times the mass of diesel. The integration of H2GEN, at high duty percentages, increases the Cost Of Energy, whether in a hybrid PV/H2GEN system or an H2GEN system. This shows the interest in the study country in using favorable duty proportions to make the use of hydrogen profitable.