Life Cycle Assessment of Future Electricity and Hydrogen Systems: Implications for Low-carbon Transport
Abstract
This study develops and applies a life cycle assessment (LCA) framework combined with predictive market models to evaluate the environmental impacts of electricity and hydrogen for transport in the EU27+UK from 2020 to 2050. By linking evolving power sector scenarios with hydrogen supply models, we assess the wellto-wheels (WTW) performance of battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) under consistent energy assumptions. Results show that electricity decarbonization can reduce GWP by up to 80% by 2050, but increases land use and mineral/metal demand due to renewable infrastructure expansion. The environmental impacts of hydrogen production are strongly influenced by the electricity mix, especially in high electrolysis scenarios. WTW analysis indicates that while BEVs consistently achieve lower WTW GWP than FCEVs across all scenarios, both drivetrains exhibit notable trade-offs in other impact categories. Scenarios dominated by blue hydrogen, although not optimal in terms of GWP, present a more balanced environmental profile, making them a viable transitional pathway in contexts that prioritize minimizing other environmental impacts.