Skip to content
1900

Threats and Challenges Associated with Ammonia Transport via Pipeline Systems

Abstract

Ammonia, due to its favorable physicochemical properties, is considered an effective hydrogen carrier, enabling the storage of surplus energy generated from renewable sources. Large-scale implementation of this concept requires the safe transport of ammonia over long distances, commonly achieved through pipeline systems—a practice with global experience dating back to the 1960s. However, operational history demonstrates that failures in such infrastructures remain inevitable, often leading to severe environmental consequences. This article reviews both passive and active methods for preventing and mitigating incidents in ammonia pipeline systems. Passive measures include the assessment of material compatibility with ammonia and the designation of adequate buffer zones. Active methods focus on leak detection techniques, such as balance-based systems, acoustic monitoring, and ammonia-specific sensors. Additionally, the article highlights the potential environmental risks associated with ammonia release, emphasizing its contribution to the greenhouse effect, as well as its adverse impacts on soil, surface and groundwater, and human health. By integrating historical lessons with modern safety technologies, the article contributes to the development of reliable ammonia transport infrastructure for the hydrogen economy.

Funding source: This research received funding as part of the statutory work commissioned by the Ministry of Education and Science; order No. 0071/GE/24, archival number: DK-4100-60/24.
Countries: Poland
Loading

Article metrics loading...

/content/journal8083
2025-10-27
2026-01-30
/content/journal8083
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test