Hydrothermal Treatment of Kitchen Waste as a Strategy for Dark Fermentation Biohydrogen Production
Abstract
This study presents an innovative approach to the production of hydrogen from liquids following hydrothermal treatment of biowaste, offering a potential solution for renewable energy generation and waste management. By combining biological and hydrothermal processes, the efficiency of H2 production can be significantly improved, contributing to a reduced carbon footprint and lower reliance on fossil fuels. The inoculum used was fermented sludge from a wastewater treatment plant, which had been thermally pretreated to enhance microbial activity towards hydrogen production. Kitchen waste, consisting mainly of plant-derived materials (vegetable matter), was used as a substrate. The process was conducted in batch 1-L bioreactors. The results showed that higher pretreatment temperatures (up to 180 ◦C) increased the hydrolysis of compounds and enhanced H2 production. However, temperatures above 180 ◦C resulted in the formation of toxic compounds, such as catechol and hydroquinone, which inhibited H2 production. The highest hydrogen production was achieved at 180 ◦C (approximately 66 mL H2/gTVSKW). The standard Gompertz model was applied to describe the process kinetics and demonstrated an excellent fit with the experimental data (R2 = 0.99), confirming the model’s suitability for optimizing H2 production. This work highlights the potential of combining hydrothermal and biological processes to contribute to the development of sustainable energy systems within the circular economy.