Coordinated Control Strategy for Island Power Generation System with Photovoltaic, Hydrogen-Fueled Gas Turbine and Hybrid Energy Storage
Abstract
Marine and island power systems usually incorporate various forms of energy supply, which poses challenges to the coordinated control of the system under diverse, irregular, and complex load operation modes. To improve the stability and self-sufficiency of island-isolated microgrids with high penetration of renewable energy, this study proposes a coordinated control strategy for an island microgrid with PV, HGT, and HESS, combining primary power allocation via low-pass filtering with a fuzzy logic-based secondary correction. The fuzzy controller dynamically adjusts power distribution based on the states of charge of the battery and supercapacitor, following a set of predefined rules. A comprehensive system model is developed in Matlab R2023b, integrating PV generation, an electrolyzer, HGT and a battery–supercapacitor HESS. Simulation results across four operational cases demonstrate that the proposed strategy reduces DC bus voltage fluctuations to a maximum of 4.71% (compared to 5.63% without correction), with stability improvements between 0.96% and 1.55%. The HESS avoids overcharging and over-discharging by initiating priority charging at low SOC levels, thereby extending service life. This work provides a scalable control framework for enhancing the resilience of marine and island microgrids with high renewable energy penetration.