Joint Optimization Scheduling of Electric Vehicles and Electro–Olefin–Hydrogen Electromagnetic Energy Supply Device for Wind–Solar Integration
Abstract
In northern China, the long winter heating period is accompanied by severe wind curtailment. To address this issue, a joint optimization scheduling strategy of electric vehicles (EVs) and electro–olefin–hydrogen electromagnetic energy supply device (EHED) is proposed to promote deep wind–solar integration. Firstly, the feasibility analysis of EVs participating in scheduling is conducted, and the operation models of dispatchable EVs and thermal energy storage EHEDs within the scheduling period are established. Secondly, a control strategy for the joint optimization scheduling of wind–solar farms, EVs, EHEDs, and power grid is constructed. Then, an economic dispatch model for joint optimization of EVs and EHEDs is established to minimize the system operation cost within the scheduling period, and the deep wind–solar integration of the joint optimization model is studied by considering EVs under different demand responses. Finally, the proposed model is solved by CPLEX solver. The simulation results show that the established joint optimization economic dispatch model of EV-EHEDs can improve the enthusiasm of dispatchable EVs to participate in deep wind–solar integration, reduce wind curtailment power, and decrease the overall system operation cost.