Applications & Pathways
Feasibility Assessment and Response Surface Optimisation of a Fuel Cell-integrated Sustainable Wind Farm in Italy
Sep 2025
Publication
This study explores the design and feasibility of a novel fuel cell-powered wind farm for residential electricity hydrogen/oxygen production and cooling/heating via a compression chiller. Wind turbine energy powers Proton Exchange Membrane (PEM) electrolyzers and a compression chiller unit. The proposed system was modeled using EES thermodynamic software and its economic viability was assessed. A case study across seven Italian regions with varying wind potentials evaluated the system’s feasibility in diverse weather conditions. Multi-objective optimization using Response Surface Methodology (RSM) determined the number of wind turbines as optimum number of electrolyzers & fuel cell units. Optimization results indicated that 37 wind turbines 1 fuel cell unit and 2 electrolyzer units yielded an exergy efficiency of 27.98 % and a cost rate of 619.9 $/h. TOPSIS analysis suggested 32 wind turbines 2 electrolyzers and 2 reverse osmosis units as an alternative configuration. Further twelve different scenarios were examined to enhance the distribution of wind farmgenerated electricity among the grid electrolyzers and reverse osmosis systems. revealing that directing 25 % to reverse osmosis 20 % to electrolyzers and 55 % to grid sales was optimal. Performance analysis across seven Italian cities (Turin Bologna Florence Palermo Genoa Milan and Rome) identified Genoa Palermo and Bologna as the most suitable locations due to favorable wind conditions. Implementing the system in Genoa the optimal site could produce 28435 MWh of electricity annually prevent 5801 tons of CO2 emissions (equivalent to 139218 $). Moreover selling this clean electricity to the grid could meet the annual clean electricity needs of approximately 5770 people in Italy
Cooperative Control of Hydrogen-energy Storage Microgrid System Based on Disturbance-rejection Model Predictive Control
Mar 2025
Publication
Model predictive control (MPC) requires high accuracy of the model. However the actual power system has complex dynamic characteristics. There must be unmodeled dynamics in the system modeling process which makes it difficult for MPC to perform the function of optimal control. ESO has the ability to observe and suppress errors combining the both can solve this problem. Thus this paper proposes a coordinated control strategy of hydrogen-energy storage system based on disturbance-rejection model predictive controller. Firstly this paper constructs the state-space model of the system and improves MPC. By connecting ESO and MPC in series this paper designs a matched disturbance-rejection model predictive controller and analyzes the robustness of the research system. Finally this paper verifies the effectiveness and feasibility of the disturbance-rejection model predictive controller under various working conditions. Compared with the method using only MPC the dynamic response time of the system frequency regulation under the proposed strategy in this paper is increased by about 29.9 % and the frequency drop rate is slowed down by 13.5 %. In addition under the AGC command and continuous load disturbance working conditions the maximum frequency deviation of the system under the proposed strategy is reduced by about 54.01 % and 48.96 %. The results clearly show that the proposed strategy in this paper significantly improves the dynamic response ability of the system and reduces the frequency fluctuation of the system after disturbance.
Real-Time Energy Management of a Microgrid Using MPC-DDQN-Controlled V2H and H2V Operations with Renewable Energy Integration
Aug 2025
Publication
This paper presents the design and implementation of an Intelligent Home Energy Management System in a smart home. The system is based on an economically decentralized hybrid concept that includes photovoltaic technology a proton exchange membrane fuel cell and a hydrogen refueling station which together provide a reliable secure and clean power supply for smart homes. The proposed design enables power transfer between Vehicle-to-Home (V2H) and Home-to-Vehicle (H2V) systems allowing electric vehicles to function as mobile energy storage devices at the grid level facilitating a more adaptable and autonomous network. Our approach employs Double Deep Q-networks for adaptive control and forecasting. A Multi-Agent System coordinates actions between home appliances energy storage systems electric vehicles and hydrogen power devices to ensure effective and cost-saving energy distribution for users of the smart grid. The design validation is carried out through MATLAB/Simulink-based simulations using meteorological data from Tunis. Ultimately the V2H/H2V system enhances the utilization reliability and cost-effectiveness of residential energy systems compared with other management systems and conventional networks.
Optimal Control of an Over-actuated Spark-Ignited Hydrogen Engine
Jun 2025
Publication
The spark-ignited (SI) hydrogen combustion engine has the potential to noticeably reduce greenhouse gas emissions from passenger cars. To prevent nitrogen oxide emissions and to increase fuel efficiency and power output complex air paths and operating strategies are utilized. This makes the engine control problem more complex challenging the conventional engine calibration process. This work combines and extends the state-of-the-art in real-time combustion engine modeling and optimal control presenting a novel control concept for the efficient operation of a hydrogen combustion engine. The extensive experimental validation with a 1.5 l three-cylinder hydrogen SI engine and a dynamically operated engine test bench with emission and in-cylinder pressure measurements provides a comprehensible comparison to conventional engine control. The results demonstrate that the proposed optimal control decreased the load tracking errors by a factor of up to 2.8 and increased the engine efficiency during lean operation by up to 10 percent while decreasing the calibration effort compared to conventional engine control.
LES Analysis of the DLR F400S.3 mGT Burner Operating with 100% Hydrogen Fuel
Oct 2025
Publication
The paper approaches a computational evaluation of the 100% hydrogen fueled DLR micro-Gas Turbine (mGT) burner F400S.3 through high-fidelity Large Eddy Simulations (LES). Sensitivity analyses on the thermal boundary conditions of the burner walls and the turbulent combustion model were conducted. The experimental OH*-Chemiluminescence distribution was compared with numerical results obtained using the Partially Stirred Reactor (PaSR) and the Extended Flamelet Generated Manifold (ExtFGM) combustion models. The results showed good agreement regarding the flame shape and reactivity prediction when non-adiabatic thermal boundary conditions were applied at the burner walls and the PaSR model was implemented. On the contrary the ExtFGM model exhibited underprediction in flame length and flame lift-off overestimating flame reactivity. Finally after selecting the combustion model that best retrieved the experimental data a pressurized LES was performed on the combustor domain to evaluate its performance under real operating conditions for mGT.
Decentralized Use Case Integration of Chemical Hydrogen Carriers: The Cost Saving Potential in Domestic Supply Chains
Oct 2025
Publication
The use of chemical hydrogen carriers such as ammonia (NH3) methanol (MeOH) dimethyl ether (DME) and liquid organic hydrogen carriers (LOHC) is considered as a potential option for hydrogen imports. Following import the carriers are either converted centrally into hydrogen or transported further to the point of use. This study evaluates various domestic transport options – truck rail inland waterway and pipeline – as unimodal or intermodal transport for hydrogen and chemical hydrogen carriers. Based on this the potential of transport and decentralized integration of carriers for various locations is assessed. A cost comparison is used to determine the maximum specific costs that a decentralized conversion plant can incur while remaining competitive with a centralized conversion plant in the port. The analysis shows that the specific costs of decentralized conversion plants at numerous locations can be significantly higher than those of centralized plants indicating considerable cost-saving potential.
Ground Testing and Analysis of Liquid-hydrogen Propulsion System for UAVs
Oct 2025
Publication
This paper presents an experimental campaign on a complete liquid hydrogen (LH2 ) propulsion system for small uncrewed aerial vehicles. The first part investigates the boil-off performance of five 12 L (0.85 kg) LH2 reservoirs with different internal designs. Results show average evaporation rates of 17–37 g/h and total evaporation times of 23–50 h corresponding to endurance of up to 50 h depending on fabrication technique and insulation design. The second part examines the integrated propulsion chain from the LH2 reservoir to the fuel cell including hydrogen transfer through an instrumented line and heat exchanger. The system delivers over 14000 Wh of electrical energy enabling ranges up to 4400 km for a 4 m fixed-wing UAV with flight speeds of 24–27 m/s. A first-order theoretical model is introduced to support preliminary sizing mass estimation and boil-off prediction. These results demonstrate clear endurance advantages of LH2 storage over compressed hydrogen systems.
Dynamic Pressure Characteristics of Multi-mode Combustion Instability in a Model Gas Turbine Combustor under Simulated Hydrogen-methane Co-firing Conditions
Oct 2025
Publication
The adoption of H2 fuel in gas turbine systems is steadily increasing as part of the transition toward cleaner energy sources. However its unique combustion characteristics pose significant challenges in managing combustion instability. This study examines the acoustic behavior of H2-CH4 mixed-fuel combustion instability using a model gas turbine combustor. To simulate instability situation of mixed fuel multi-mode acoustic excitation experiments are performed with the fixed fundamental forcing at the combustor's resonance frequency (∼160 Hz) together with additional variable forcing at 250 Hz and 1000 Hz which are the representative instability modes of CH4 and H2 flames respectively. In some cases highly risky signal amplification is observed. For example when the amplitude ratios of forcing at 160 250 and 1000 Hz are 1:9:0 the response reaches up to 106.15 kPa at the other frequency of 1750 Hz. This phenomenon is confirmed by attribution of the interaction of the overlapping mode frequencies and the node and antinode position of standing wave with no such amplification observed at other experimental conditions. Consequently the optimal sensor location is expected to vary with changes in the co-firing ratio and conditions and identifying these optimal positions is essential for reliable monitoring and successful implementation of H2 co-firing technology.
Certification Gap Analysis for Normal-Category and Large Hydrogen-Powered Airplanes
Mar 2025
Publication
The transition to hydrogen as an aviation fuel as outlined in current decarbonization roadmaps is expected to result in the entry into service of hydrogen-powered aircraft in 2035. To achieve this evolution certification regulations are key enablers. Due to the disruptive nature of hydrogen aircraft technologies and their associated hazards it is essential to assess the maturity of the existing regulatory framework for certification to ensure its availability when manufacturers apply for aircraft certification. This paper presents the work conducted under the Clean Aviation CONCERTO project to advance certification readiness by comprehensively identifying gaps in the current European regulations. Generic methodologies were developed for regulatory gap and risk analyses and applied to a hydrogen turbine aircraft with non-propulsive fuel cells as the APU. The gap analysis conducted on certification specifications for large and normal-category airplanes as well as engines confirmed the overall adequacy of many existing requirements. However important gaps exist to appropriately address hydrogen hazards particularly concerning fire and explosion hydrogen storage and fuel systems crashworthiness and occupant survivability. The paper concludes by identifying critical areas for certification and highlighting the need for complementary hydrogen phenomenology data which are key to guiding future research and regulatory efforts for certification readiness maturation.
Hydrogen-based Technologies towards Energy-resilient Low-carbon Buildings: Opportunities and Challenges Review
Oct 2025
Publication
Towards low-carbon buildings with resilient energy performance renewable energy resources and flexible energy assets play key roles in managing the electrical and heat demands. Hydrogen-based systems represent a promising solution through renewable hydrogen production and long-term storage. This paper systematically reviews 35 peer-reviewed studies (1990–2024) on hydrogen integration in buildings focusing on demand-side management (DSM) optimization methods and system performance. The review covers the environmental impacts feasibility and economic viability of integrating different hydrogen systems for supplying energy. Across critical reviews case studies hydrogen supplementary systems achieved CO2 reductions between 12 % and 87 % operational cost decreases of up to 40 % and efficiency gains exceeding 80 %. Payback periods varied widely between 9 and 20 years demonstrating high investment costs. Key gaps include limited field validation economic feasibility and public acceptance of hydrogen homes. One key area for future investigation is optimizing energy flows across production storage and demand particularly in Vehicle-to-Building (V2B) applications. This review paper highlights opportunities especially the potential of hydrogen system in decarbonization of buildings by long-term energy storage barriers and policy needs for implementing hydrogen technologies in grid-connected and remote areas to enhance sustainable and resilient buildings.
Novel Sustainability Assessment Methodology with Alternative Use Impact Accounting: Application on Use of Hydrogen in Transportation Sector
Sep 2025
Publication
This study presents the application of a new sustainability assessment methodology. It aims to improve the information that can be obtained from a sustainability assessment including the concept of alternative usage impact. To prove the effectiveness of this methodology three different hydrogen production methodologies considering its consumption in transportation sector is the case of study. The methodologies considered are Steam Methane Reform using natural gas Proton Exchange Membrane electrolysis one using grid electricity and the other study case using central tower solar power plant electricity from the PS10 facility. While separately green hydrogen is the technology with less environmental impact when considering the full system and the impact of the green hydrogen on the rest of the resources the integration of green hydrogen technology is not the most environmentally sustainable. Similar behavior is observed in the economic and technical fields. The different accounting of combinations of technologies and the impact on the resource which is not used provides the sustainability performance of the overall system. These results show that in order to account the all impacts taking place in a energy technology integration its impact on the rest of resources and uses provide more valuable information.
Hydrogen Energy Systems for Decarbonizing Smart Cities and Industrial Applications: A Review
Oct 2025
Publication
Hydrogen is increasingly recognized as a key energy vector for achieving deep decarbonization across urban and industrial sectors. Supporting global efforts to reduce greenhouse gas (GHG) emissions and achieve the Sustainable Development Goals (SDGs) it is essential to understand the multi-sectoral role of the hydrogen value chain spanning production storage and end-use applications with particular emphasis on smart city systems and industrial processes. Green hydrogen production technologies including alkaline water electrolysis (AWE) proton exchange membrane (PEM) electrolysis anion exchange membrane (AEM) electrolysis and solid oxide electrolysis cells (SOECs) are evaluated in terms of efficiency scalability and integration potential. Storage pathways are examined across physical storage (compressed gas cryo-compressed and liquid hydrogen) material-based storage (solid-state absorption in metal hydrides and chemical carriers such as LOHCs and ammonia) and geological storage (salt caverns depleted gas reservoirs and deep saline aquifers) highlighting their suitability for urban and industrial contexts. In the smart city domain hydrogen is analyzed as an enabler of zero-emission transportation low-carbon residential and commercial heating and renewable-integrated smart grids with long-duration storage capabilities. System-level studies demonstrate that coordinated integration of these applications can deliver higher overall energy efficiency deeper reductions in life-cycle GHG emissions and improved resilience of urban energy systems compared with sector-specific approaches. Policy frameworks safety standards and digitalization strategies are reviewed to illustrate how hydrogen infrastructure can be embedded into interconnected urban energy systems. Furthermore industrial applications focus on hydrogen’s potential to decarbonize energy-intensive processes and enable sector coupling between electricity heat and manufacturing. The environmental implications of hydrogen deployment are also considered including resource efficiency life-cycle emissions and ecosystem impacts. In contrast to reviews addressing isolated aspects of hydrogen technologies this study synthesizes technological infrastructural and policy dimensions integrating insights from over 400 studies to highlight the multifaceted role of hydrogen in sustainable urban development and industrial decarbonization and the added benefits achievable through coordinated cross-sector deployment strategies.
Multi-time Scaling Optimization for Electric Station Considering Uncertainties of Renewable Energy and EVs
Oct 2025
Publication
The development of new energy vehicles particularly electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) represents a strategic initiative to address climate change and foster sustainable development. Integrating PV with hydrogen production into hybrid electricity-hydrogen energy stations enhances land and energy efficiency but introduces scheduling challenges due to uncertainties. A multi-time scale scheduling framework which includes day-ahead and intraday optimization is established using fuzzy chance-constrained programming to minimize costs while considering the uncertainties of PV generation and charging/refueling demand. Correspondingly trapezoidal membership function and triangular membership function are used for the fuzzy quantification of day-ahead and intraday predictions of photovoltaic power generation and load demands. The system achieves 29.37% lower carbon emissions and 17.73% reduced annualized costs compared to day-ahead-only scheduling. This is enabled by real-time tracking of PV/load fluctuations and optimized electrolyzer/fuel cell operations maximizing renewable energy utilization. The proposed multi-time scale framework dynamically addresses short-term fluctuations in PV generation and load demand induced by weather variability and temporal dynamics. By characterizing PV/load uncertainties through fuzzy methods it enables formulation of chance-constrained programming models for operational risk quantification. The confidence level – reflecting decision-makers’ reliability expectations – progressively increases with refined temporal resolution balancing economic efficiency and operational reliability.
Development and Validation of an All-metal Scroll Pump for PEM Fuel Cell Hydrogen Recirculation
Oct 2025
Publication
Hydrogen recirculation is essential for maintaining fuel efficiency and durability in Proton Exchange Membrane Fuel Cell (PEMFC) systems particularly in automotive range extender applications. This study presents the design simulation and experimental validation of a dry all-metal scroll pump developed for hydrogen recirculation in a 5 kW PEMFC system. The pump operates without oil or polymer seals offering long-term compatibility with dry hydrogen. Two prototypes were fabricated: SP1 incorporating PTFE-bronze tip seals and SP2 a fully metallic seal-free design. A fully deterministic one-dimensional (1D) model was developed to predict thermodynamic performance including leakage and heat transfer effects and validated against experimental results. SP1 achieved higher flow rates due to reduced axial leakage but experienced elevated friction and temperature. In contrast SP2 provided improved thermal stability and lower friction with slightly reduced flow performance. The pump demonstrated a maximum flow rate of 50 l/min and an isentropic efficiency of 82.2 % at 2.5 bara outlet pressure. Simulated performance showed strong agreement with experimental results with deviations under 5 %. The findings highlight the critical role of thermal management and manufacturing tolerances in dry scroll pump design. The seal-free liquid-cooled scroll architecture presents a promising solution for compact oil-free hydrogen recirculation in low-power fuel cell systems.
Providing the Transport Sector in Europe with Fossil Free Energy - A Model-based Analysis under Consideration of the MENA Region
Mar 2025
Publication
For reaching the European greenhouse gas emission targets the phase-in of alternative technologies and energy carriers is crucial for all sectors. For the transport sector synthetic fuels are–next to electromobility–a promising option especially for long-distance shipping and air transport. Within this context the import of synthetic fuels from the Middle East and Northern Africa (MENA) region seems attractive due to low costs for renewable electricity in this region and low transport costs of synthetic fuels at the same time. Against this background this paper analyzes the role of the MENA region in meeting the future synthetic fuel demand in Europe using a cost-optimizing energy supply model. In this model the production storage and transport of electricity hydrogen and synthetic fuels by various technologies in both European and MENA countries in the period up to 2050 are explicitly modeled. Thereby different scenarios are analyzed to depict regional differences in investment risks: a base scenario that does not take into account regional differences in investments risks and three risk scenarios with different developments of regional investment risks. Sensitivity analyses are also carried out to derive conclusions about the robustness of results. Results show that meeting the future synthetic fuel demand in Europe to a large extent by imports from the MENA region can be an attractive option from an economic point of view. If investment risks are incorporated however lower import quotas of synthetic fuels are economically attractive for Europe: the higher generation costs are outweighed by the lower investments risks in Europe to a certain extent. Thereby investment risks outweigh other factors such as transport distance or renewable electricity generation costs in terms of exporting MENA regions and a synthetic fuel import is especially attractive from MENA countries with low investment risks. Concluding within this paper detailed export relations between MENA and EU considering investment risks were modeled for the first time. These model results should be complemented by a more in-depth analysis of the MENA countries including evaluating opportunities for local value chain development sustainability concerns (including social factors) and optimal site selection.
Hydrogen Cargo Bikes as a Data-driven Solution for Last-mile Decarbonization
Oct 2025
Publication
The growing demand for low-emission urban freight has intensified efficiency challenges in lastmile delivery especially in dense city centres. This study assesses hydrogen-powered cargo bikes as a scalable zero-emission alternative to fossil fuel vans and battery-electric cargo bikes. Using real-world logistics data from Rome we apply simulation models including Monte Carlo cost analysis Artificial Intelligence driven routing K-means station placement and fleet scaling. Results show hydrogen bikes deliver 15% more parcels daily than electric counterparts reduce refuelling detours by 31.4% and lower per-trip fuel use by 32%. They can cut up to 120 metric tons of CO2 annually per 100-bike fleet. While battery-electric cargo bikes remain optimal for short trips hydrogen bikes offer superior uptime range and rapid refuelling—ideal for highfrequency mid-distance logistics. Under supportive pricing and infrastructure hydrogen cargo bikes represent a resilient and sustainable solution for decarbonizing last-mile delivery in city areas.
Ammonia–Hydrogen Dual-Fuel Combustion: Strategies for Optimizing Performance and Reducing Emissions in Internal Combustion Engines
Jun 2025
Publication
The urgent need to mitigate climate change and reduce greenhouse gas emissions has accelerated the search for sustainable and scalable energy carriers. Among the different alternatives ammonia stands out as a promising carbon-free fuel thanks to its high energy density efficient storage and compatibility with existing infrastructure. Moreover it can be produced through sustainable green processes. However its application in internal combustion engines is limited by several challenges including low reactivity narrow flammability limits and high ignition energy. These factors can compromise combustion efficiency and contribute to increased unburned ammonia emissions. To address these limitations hydrogen has emerged as a complementary fuel in dual-fuel configurations with ammonia. Hydrogen’s high reactivity enhances flame stability ignition characteristics and combustion efficiency while reducing emissions of unburned ammonia. This review examines the current status of dual-fuel ammonia and hydrogen combustion strategies in internal combustion engines and summarizes the experimental results. It highlights the potential of dual-fuel systems to optimize engine performance and minimize emissions. It identifies key challenges knowledge gaps and future research directions to support the development and widespread adoption of ammonia–hydrogen dual-fuel technologies.
Techno-Economic Evaluation of a Floating Photovoltaic-Powered Green Hydrogen for FCEV for Different Köppen Climates
Sep 2025
Publication
The escalating global demand for electricity coupled with environmental concerns and economic considerations has driven the exploration of alternative energy sources creating competition for land with other sectors. A comprehensive analysis of a 10 MW floating photovoltaic (FPV) system deployed across different Köppen climate zones along with techno-economic analysis involves evaluating technical efficiency and economic viability. Technical parameters are assessed using PVsyst simulation and HOMER Pro. While economic analysis considers return on investment net present value internal rate of return and payback period. Results indicate that temperate and dry zones exhibit significant electricity generation potential from an FPV. The study outlines the payback period with the lowest being 5.7 years emphasizing the system’s environmental benefits by reducing water loss in the form of evaporation. The system is further integrated with hydrogen generation while estimating the number of cars that can be refueled at each location with the highest amount of hydrogen production being 292817 kg/year refueling more than 100 cars per day. This leads to an LCOH of GBP 2.84/kg for 20 years. Additionally the comparison across different Koppen climate zones suggests that even with the high soiling losses dry climate has substantial potential; producing up to 18829587 kWh/year of electricity and 292817 kg/year of hydrogen. However factors such as high inflation can reduce the return on investment to as low as 13.8%. The integration of FPV with hydropower plants is suggested for enhanced power generation reaffirming its potential to contribute to a sustainable energy future while addressing the UN’s SDG7 SDG9 SDG13 and SDG15.
Innovative Aircraft Heat Exchanger Integration for Hydrogen-electric Propulsion
Sep 2025
Publication
Propulsion systems in aircraft using reciprocating engines often face the challenge of managing thermal loads effectively. This problem is similar to the utilisation of polymer electrolyte membrane fuel cell systems which despite their high efficiency emit a high proportion of heat when converting chemical energy into electrical energy. Transfer of the rejected heat to the air is efficiently performed by heat exchangers. Since convective heat transfer is physically linked to fluid friction at the heat exchanger walls a pressure loss occurs. In a high-speed flow regime of the aircraft during cruise the integration of heat exchangers combined with a fan stage inside a nacelle (thus forming an impeller configuration) represents a promising approach for the dual benefit of dissipating excess heat and harnessing it for additional thrust generation through the ram jet effect. Striving for enhanced thrust performance of hydrogen electric commercial aircraft this paper presents the results of a parameter study based on a 1D-modelling approach. The focus is placed on the influence of design and operating parameters (ambient conditions fan pressure ratio diffusion ratio airside temperature difference) on performance and sizing of the proposed propulsion system. It is shown that the proposed system performs best at an altitude of 11 km and with increasing freestream Mach number. Furthermore the main challenges related to the combination of a thrust generation system with a heat exchanger in terms of sizing in particularly the required heat exchanger dimensions under different operating conditions are discussed.
Narratives and Counter-narratives in Sustainability Transitions: A Study on the Port of Rotterdam from a Multi-level Perspectives
Sep 2025
Publication
Infrastructure projects can act as niches for innovation development contribute to strategic goals of network owners and drive broader systemic transitions. However limited research has examined how sustainability transitions are shaped through narratives and counternarratives around infrastructure projects. Using a case study of the port of Rotterdam we analyze how three embedded projects - Maasvlakte 2 RDM Campus and the Hydrogen Pipeline - reflected and shaped evolving narratives and counter-narratives over a 20-year sustainability transition. Grounded in the Multi-Level Perspective (MLP) the study demonstrates how an infrastructure owner like the Port of Rotterdam Authority (PoRA) strategically mobilized narrative framing to reshape existing regimes over time. The study contributes to the debate on project management and transition studies by highlighting how infrastructure project owners respond to transition-related tensions by shaping defending and adapting project narratives over time thereby influencing sustainability trajectories.
No more items...