Applications & Pathways
Advancing Renewable Energy: Strategic Modeling and Optimization of Flywheel and Hydrogen-based Energy System
Sep 2024
Publication
This study introduces a hybrid energy storage system that combines advanced flywheel technology with hydrogen fuel cells and electrolyzers to address the variability inherent in renewable energy sources like solar and wind. Flywheels provide quick energy dispatch to meet peak demand while hydrogen fuel cells offer sustained power over extended periods. The research explores the strategic integration of these technologies within a hybrid photovoltaic (PV)-flywheel‑hydrogen framework aiming to stabilize the power supply. To evaluate the impact of flywheel integration on system sizing and load fluctuations simulations were conducted both before and after the flywheel integration. The inclusion of the flywheel resulted in a more balanced energy production and consumption profile across different seasons notably reducing the required fuel cell capacity from 100 kW to 30 kW. Additionally the integration significantly enhanced system stability enabling the fuel cell and electrolyzer to operate at consistent power during load fluctuations. The system achieved efficiencies of 71.42 % for the PEM electrolyzer and 62.14 % for the PEM fuel cell. However the introduction of the flywheel requires a higher capacity of PV modules and a larger electrolyzer. The overall flywheel's efficiency was impacted by parasitic energy losses resulting in an overall efficiency of 46.41 %. The minimum efficiency observed across various scenarios of the model studied was 3.14 % highlighting the importance of considering these losses in the overall system design. Despite these challenges the hybrid model demonstrated a substantial improvement in the reliability and stability of renewable energy systems effectively bridging short-term and long-term energy storage solutions.
Prospects of Low and Zero-carbon Renewable Fuels in 1.5-degree Net Zero Emission Actualisation by 2050: A Critical Review
Sep 2022
Publication
The Paris Climate Agreement seeks to keep global temperature increases under 2° Celsius ideally 1.5° Celsius. This goal necessitates significant emission reductions. By 2030 emissions are expected to range between 52 and 58 GtCO2e from their 2016 level of approximately 52 GtCO2e. This review paper explores a number of low and zero-carbon renewable fuels such as hydrogen green ammonia green methanol biomethane natural gas and synthetic methane (with natural gas and synthetic methane subject to CCUS both at processing and at final use) as alternative solutions for providing a way to rebalance transition paths in order to achieve the goals of the Paris Agreement while also reaping the benefits of other sustainability targets. The results show renewables will need to account for approximately 90% of total electricity generation by 2050 and approximately 25% of non-electric energy usage in buildings and industry. However low and zero-carbon renewable fuels currently only contributes about 15% to the global energy shares and it will take about 10% more capacity to reach the 2050 goal. The transportation industry will need to take important steps toward energy efficiency and fuel switching in order to achieve the 20% emission reduction. Therefore significant new commitments to efficient low-carbon alternatives will be necessary to make this enormous change. According to this paper investing in energy efficiency and lowcarbon alternative energy must rise by a factor of about five by 2050 in comparison to 2015 levels if the 1.5 °C target is to be realised.
A Review of Electrolyzer-based Systems Providing Grid Ancillary Service: Current Status, Market, Challenges and Future Directions
Feb 2024
Publication
Concerns related to climate change have shifted global attention towards advanced sustainable and decarbonized energy systems. While renewable resources such as wind and solar energy offer environmentally friendly alternatives their inherent variability and intermittency present significant challenges to grid stability and reliability. The integration of renewable energy sources requires innovative solutions to effectively balance supply and demand in the electricity grid. This review explores the critical role of electrolyzer systems in addressing these challenges by providing ancillary services to modern electricity grids. Electrolyzers traditionally used only for hydrogen production have now emerged as versatile tools capable of responding quickly to grid load variations. They can consume electricity during excess periods or when integrated with fuel cells generate electricity during peak demand contributing to grid stability. Therefore electrolyzer systems can fulfill the dual function of producing hydrogen for the end-user and offering grid balancing services ensuring greater economic feasibility. This review paper aims to provide a comprehensive view of the electrolyzer systems’ role in the provision of ancillary services including frequency control voltage control congestion management and black start. The technical aspects market projects challenges and future prospects of using electrolyzers to provide ancillary services in modern energy systems are explored.
Conceptual Design and Aerostructural Trade-Offs in HydrogenPowered Strut-Braced Wing Aircraft: Insights into Dry and Wet Ultra-High Aspect Ratio Wings
Jan 2025
Publication
Stringent sustainability goals are set for the next generation of aircraft. A promising novel airframe concept is the ultra-high aspect ratio Strut-Braced Wing (SBW) aircraft. Hydrogen-based concepts are active contenders for sustainable propulsion. The study compares a medium-range Liquid Hydrogen (LH2) to a kerosene-based SBW aircraft designed with the same top-level requirements. For both concepts overall design operating costs and emissions are evaluated using the tool SUAVE. Furthermore aerostructural optimizations are performed for the wing mass of SBW aircraft with and without wing-based fuel tanks. Results show that the main difference in the design point definition results from a higher zero-lift drag due to an extended fuselage housing the LH2 tanks with a small reduction in the required wing loading. Structural mass increases of the LH2 aircraft due to additional tanks and fuselage structure are mostly offset by fuel mass savings. While the fuel mass accounts for nearly 25% of the kerosene design’s Maximum Take-Off Mass (MTOM) this reduces to 10% for the LH2 design. The LH2 aircraft has 16% higher operating costs with emission levels reduced to 57–82% of the kerosene aircraft depending on the LH2 production method. For static loads the absence of fuel acting as bending moment relief in the wing results in an increase in wing structural mass. However the inclusion of roll rate requirements causes large wing mass increases for both concepts significantly outweighing dry wing penalties.
Applicability of Hydrogen Fuel for a Cruise Ship
Jan 2025
Publication
Cruise ships function as a means of transport while simultaneously accommodating thousands of guests providing a holiday experience with various entertainment options. This translates to high energy requirements for propulsion and hotel operations typically covered by the combustion of fossil fuels. The operation of cruise vessels with fossil fuels contributes to carbon dioxide and also local harmful emissions in ports when shore power connections are not available. To enable cleaner and sustainable cruising alternative technologies and fuels must be adopted. The present study evaluated the applicability of hydrogen fuel in combustion engines in a Meraviglia-class cruise ship. The fuel consumption of the ship was based on a real operation in Europe. This study examined how fuel energy in the form of LH2 could be stored on the ship for a European cruise route and concludes that 3700 m3 of storage space would be needed to accommodate the liquid hydrogen. The mass of the LH2 would only be one-third of that of fossil fuels but the weight of the LH2 tanks would most likely increase the total weight of the hydrogen storage. Additional new technologies and combined power production could significantly reduce the amount of LH2 to be stored.
Reversible Solid Oxide Cells Applications to the Building Sector
Apr 2023
Publication
Hydrogen can manage intermittent Renewable Energy Sources (RES) especially in high-RES share systems. The energy transition calls for mature low cost low space solutions bringing the attention to unitized items such as the reversible Solid Oxide Cell (rSOC). This device made of a single unit can work as an electrolyzer and as fuel cell with high efficiency fuel flexibility and producing combined heat. The objective of this review is to identify and classify rSOC applications to the building sector as an effective solution and to show how much this technology is near to its commercialisation. Research & Development projects were analysed and discussed for a comprehensive overview. Conclusions show an increasing interest in the reversible technology although it is still at pre industrialisation stage with few real applications in the building sector of which the majority is reported commented and compared in this paper for the first time.
Optimization Research on a Novel Community Integrated Energy System Based on Solar Energy Utilization and Energy Storage
Feb 2025
Publication
Integrated energy systems (IESs) are essential for enabling the energy transition in communities and reducing CO2 emissions. This paper proposes a novel IES that combines photovoltaic (PV) and solar thermal energy with coordinated electrical and thermal energy storage to meet the energy demands of residential communities. The system also incorporates hydrogen production for fuel cell vehicles. A dual-objective optimization model was developed minimizing both economic costs and CO2 emissions. The system’s performance was evaluated using data from a case study in Dalian which showed that the IES successfully reduced the annual total cost and CO2 emissions compared to conventional systems. The key findings showed that PV electrolysis for hydrogen production provides both economic and environmental advantages. The system’s integration of solar thermal energy offers higher economic efficiency while PV energy supplies enhance coordination. Additionally carbon trading prices effectively reduce emissions but excessively high prices do not always lead to better emission outcomes. This study introduces a comprehensive multi-energy approach for optimizing the energy supply contributing novel insights to the field of sustainable energy systems.
Spray Characterization of Direct Hydrogen Injection as a Green Fuel with Lower Emissions
May 2024
Publication
A viable green energy source for heavy industries and transportation is hydrogen. The internal combustion engine (ICE) when powered by hydrogen offers an economical and adaptable way to quickly decarbonize the transportation industry. In general two techniques are used to inject hydrogen into the ICE combustion chamber: port injection and direct injection. The present work examined direct injection technology highlighting the need to understand and manage hydrogen mixing within an ICE’s combustion chamber. Before combusting hydrogen it is critical to study its propagation and mixture behavior just immediately before burning. For this purpose the DI-CHG.2 direct injector model by BorgWarner was used. This injector operated at 35 barG and 20 barG as maximum and minimum upstream pressures respectively; a 5.8 g/s flow rate; and a maximum tip nozzle temperature of 250 ◦C. Experiments were performed using a high-pressure and hightemperature visualization vessel available at our facility. The combustion mixture prior to burning (spray) was visually controlled by the single-pass high-speed Schlieren technique. Images were used to study the spray penetration (S) and spray volume (V). Several parameters were considered to perform the experiments such as the injection pressure (Pinj) chamber temperature (Tch) and the injection energizing time (Tinj). With pressure ratio and injection time being the parameters commonly used in jet characterization the addition of temperature formed a more comprehensive group of parameters that should generally aid in the characterization of this type of gas jets as well as the understanding of the combined effect of the rate of injection on the overall outcome. It was observed that the increase in injection pressure (Pinj) increased the spray penetration depth and its calculated volume as well as the amount of mass injected inside the chamber according to the ROI results; furthermore it was also observed that with a pressure difference of 20 bar (the minimum required for the proper functioning of the injector used) cyclic variability increased. The variation in temperature inside the chamber had less of an impact on the spray shape and its penetration; instead it determined the velocity at which the spray reached its maximum length. In addition the injection energizing time had no effect on the spray penetration.
Low-Carbon Industrial Heating in the EU and UK: Integrating Waste Heat Recovery, High-Temperature Heat Pumps, and Hydrogen Technologies
Aug 2025
Publication
This research introduces a two-stage low-carbon industrial heating process leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies followed by 0D modelling of the integrated system for technical and feasibility assessment. Within 10 years the EU industry will be supported by two main strategies to transition to low-carbon energy: (a) shifting from grid-mix electricity towards fully renewable sources and (b) expanding low-carbon hydrogen infrastructure within industrial clusters. On the demand side process heating in the industrial sector accounts for 70% of total energy consumption in industry. Almost one-fifth of the energy consumed to fulfil the process heat demand is lost as waste. The proposed heating solution is tailored for process heat in industry and stands apart from the dual-mode residential heating system (i.e. heat pump and gas boiler) as it is based on integrated and simultaneous operation to meet industry-level reliability at higher temperatures focusing on WHR and low-carbon hydrogen. The solution uses a cascaded heating approach. Low- and medium-temperature WH are exploited to drive high-temperature heat pumps (HTHPs) followed by hydrogen burners fuelled by hydrogen generated on-site by electrolysers which are powered by advanced WHR technologies. The results revealed that the deployment of the solution at scale could fulfil ~14% of the process heat demand in EU/UK industries by 2035. Moreover with further availability of renewable energy sources and clean hydrogen it could have a higher contribution to the total process heat demand as a low-carbon solution. The economic analysis estimates that adopting the combined heating solution—benefiting from the full capacity of WHR for the HTHP and on-site hydrogen production—would result in a levelised cost of heat of ~EUR 84/MWh which is lower than that of full electrification of industrial heating in 2035.
Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis
Sep 2024
Publication
Unmanned aerial vehicles (UAVs) have become an integral part of modern life serving both civilian and military applications across various sectors. However existing power supply systems such as batteries often fail to provide stable long-duration flights limiting their applications. Previous studies have primarily focused on battery-based power which offers limited flight endurance due to lower energy densities and higher system mass. Proton exchange membrane (PEM) fuel cells present a promising alternative providing high power and efficiency without noise vibrations or greenhouse gas emissions. Due to hydrogen’s high specific energy which is substantially higher than that of combustion engines and battery-based alternatives UAV operational time can be significantly extended. This paper investigates the potential of PEM fuel cells as an alternative power source for electric propulsion in UAVs. This study introduces an adaptive fully functioning PEM fuel cell model developed using a reduced-order modeling approach and optimized for UAV applications. This research demonstrates that PEM fuel cells can effectively double the flight endurance of UAVs compared to traditional battery systems achieving energy densities of around 1700 Wh/kg versus 150–250 Wh/kg for batteries. Despite a slight increase in system mass fuel cells enable significantly longer UAV operations. The scope of this study encompasses the comparison of battery-based and fuel cell-based propulsion systems in terms of power mass and flight endurance. This paper identifies the limitations and optimal applications for fuel cells providing strong evidence for their use in UAVs where extended flight time and efficiency are critical.
Diffusible Hydrogen Behavior and Delayed Fracture of Cold Rolled Martensitic Steel in Consideration of Automotive Manufacturing Process and Vehicle Service Environment
Oct 2020
Publication
This study aims to elucidate the behavior of diffusible hydrogen and delayed fracture in martensitic steel with 1500 MPa strength during automotive painting process and under vehicle service conditions. A sequential process of automotive pretreatment line and vehicle service environment is simulated to evaluate the hydrogen pick up in each process. In case of the automotive painting line the absorption of hydrogen is within the common range in the process of phosphating treatment and electrodeposition. The baking process plays an effective role for desorbing the diffusible hydrogen absorbed during the automotive pre-treatment such as zinc-phosphating and electrodeposition process. In case of the corrosion environment under the automotive driving conditions hydrogen induced delayed fracture is accelerated as the exposure time increases. Further it is clarified that severe plastic deformation are the significant factors for hydrogen induced delayed fracture under with low pH value and present of chloride ion in a chemical solution parameter. In summary hydrogen is transported constantly during electrodeposition sequential line process of automobile manufacturing below the hydrogen content of 0.5 ppm which is not critical value for leading to hydrogen delayed fracture based on results of slow strain rate tensile tests. However exposure to extreme conditions under service environment of vehicle such as acidic solution and chloride chemistry solution that result in high level of hydrogen absorption severe plastic deformation in the sheared edge and constantly applied internal or external stresses can cause the hydrogen induced delayed fracture in the fully martensitic steels.
Essentials of Hydrogen Storage and Power Systems for Green Shipping
Jan 2025
Publication
This paper establishes a framework of boundary conditions for implementing hydrogen energy systems in ships identifying what is feasible within maritime constraints. To support a comprehensive understanding of hydrogen systems onboard vessels an extensive technical review of hydrogen storage and power systems is provided covering the entire power value chain. Key aspects include equipment arrangement integration of fuel cell powertrain and presentation of the complete storage system in compliance with regulations. Engineering considerations such as material selection and insulation equipment specifications (e.g. pressure relief valves and hydrogen purity) and system configurations are analysed. Key findings reveal that fuel cells must achieve operational lifespans exceeding 46000 h to be viable for maritime applications. Additionally reliance solely on volumetric energy density underestimates storage needs necessitating provisions for cofferdams ullage space tank heels and hydrogen conditioning areas. Regulatory gaps are identified including inadequate safety provisions and inappropriate material guidelines.
Digital Real-Time Simulation and Power Quality Analysis of a Hydrogen-Generating Nuclear-Renewable Integrated Energy System
Feb 2025
Publication
This paper investigates the challenges and solutions associated with integrating a hydrogen-generating nuclear-renewable integrated energy system (NR-IES) under a transactive energy framework. The proposed system directs excess nuclear power to hydrogen production during periods of low grid demand while utilizing renewables to maintain grid stability. Using digital real-time simulation (DRTS) in the Typhoon HIL 404 model the dynamic interactions between nuclear power plants electrolyzers and power grids are analyzed to mitigate issues such as harmonic distortion power quality degradation and low power factor caused by large non-linear loads. A three-phase power conversion system is modeled using the Typhoon HIL 404 model and includes a generator a variable load an electrolyzer and power filters. Active harmonic filters (AHFs) and hybrid active power filters (HAPFs) are implemented to address harmonic mitigation and reactive power compensation. The results reveal that the HAPF topology effectively balances cost efficiency and performance and significantly reduces active filter current requirements compared to AHF-only systems. During maximum electrolyzer operation at 4 MW the grid frequency dropped below 59.3 Hz without filtering; however the implementation of power filters successfully restored the frequency to 59.9 Hz demonstrating its effectiveness in maintaining grid stability. Future work will focus on integrating a deep reinforcement learning (DRL) framework with real-time simulation and optimizing real-time power dispatch thus enabling a scalable efficient NR-IES for sustainable energy markets.
Comparative Study and Optimization of Energy Management Strategies for Hydrogen Fuel Cell Vehicles
Sep 2024
Publication
Fuel cell hybrid systems due to their combination of the high energy density of fuel cells and the rapid response capability of power batteries have become an important category of new energy vehicles. This paper discusses energy management strategies in hydrogen fuel cell vehicles. Firstly a detailed comparative analysis of existing PID control strategies and Adaptive Equivalent Consumption Minimization Strategies (A-ECMSs) is conducted. It was found that although A-ECMS can balance the energy utilization of the fuel cell and power battery well the power fluctuations of the fuel cell are significant leading to increased hydrogen consumption. Therefore this paper proposes an improved Adaptive Low-Pass Filter Equivalent Consumption Minimization Strategy (A-LPF-ECMS). By introducing low-pass filtering technology transient changes in fuel cell power are smoothed effectively reducing fuel consumption. Simulation results show that under the 6*FTP75 cycle the energy loss of A-LPF-ECMS is reduced by 10.89% (compared to the PID strategy) and the equivalent hydrogen consumption is reduced by 7.1%; under the 5*WLTC cycle energy loss is reduced by 5.58% and equivalent hydrogen consumption is reduced by 3.18%. The research results indicate that A-LPF-ECMS performs excellently in suppressing fuel cell power fluctuations under idling conditions significantly enhancing the operational efficiency of the fuel cell and showing high application value.
Application of Levelized and Environmental Cost Accounting Techniques to Demonstrate the Feasibility of Green Hydrogen-Powered Buses in Brazil
Feb 2025
Publication
Background: This study applied levelized cost of hydrogen (LCOH) and environmental cost accounting techniques to evaluate the feasibility of producing green hydrogen (GH2) via alkaline electrolysis for use in a bus fleet in Fortaleza Brazil. Methods: A GH2 plant with a 3 MW wind tower was considered in this financial project. A sensitivity analysis was conducted to assess the economic viability of the project considering the influence of production volume the number of electrolysis kits financing time and other kay economic indices. Revenue was derived from the sale of by-products including green hospital oxygen (GHO2) and excess wind energy. A life cycle assessment (LCA) was performed to quantify material and emission flows throughout the H2 production chain. A zero-net hydrogen price scenario was tested to evaluate the feasibility of its use in urban transportation. Results: The production of GH2 in Brazil using alkaline electrolysis powered by wind energy proved to be economically viable for fueling a hydrogen-powered bus fleet. For production volumes ranging from 8.89 to 88.9 kg H2/h the sensitivity analysis revealed high economic performance achieving a net present value (NPV) between USD 19.4 million and USD 21.8 million a payback period of 1–4 years an internal rate of return (IRR) of 24–90% and a return on investment (ROI) of 300–1400%. The LCOH decreased with increased production ranging from 56 to 25 USD/MWh. Over the project timeline GH2 production and use in the bus fleet reduced CO2 emissions by 53000–287000 t CO2 eq. The fuel cell bus fleet project demonstrated viability through fuel cost savings and revenue from carbon credit sales highlighting the economic social and environmental sustainability of GH2 use in urban transportation in Brazil.
Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems
Sep 2024
Publication
A promising energy carrier and storage solution for integrating renewable energies into the power grid currently being investigated is hydrogen produced via electrolysis. It already serves various purposes but it might also enable the development of hydrogen-based electricity storage systems made up of electrolyzers hydrogen storage systems and generators (fuel cells or engines). The adoption of hydrogen-based technologies is strictly linked to the electrification of end uses and to multicarrier energy grids. This study introduces a generic method to integrate and optimize the sizing and operation phases of hydrogen-based power systems using an energy hub optimization model which can manage and coordinate multiple energy carriers and equipment. Furthermore the uncertainty related to renewables and final demands was carefully assessed. A case study on an urban microgrid with high hydrogen demand for mobility demonstrates the method’s applicability showing how the multi-objective optimization of hydrogen-based power systems can reduce total costs primary energy demand and carbon equivalent emissions for both power grids and mobility down to −145%. Furthermore the adoption of the uncertainty assessment can give additional benefits allowing a downsizing of the equipment.
Impact of Hydrogen Direct Injection on Engine Combustion and Emissions in a GDI Engine
Sep 2023
Publication
The combustion and emission characteristics of a hydrogen engine were investigated through experimental analysis using a GDI engine. To enable hydrogen in-cylinder direct injection a specialized hydrogen gas injector was employed. A comparative analysis of the combustion performance between gasoline and hydrogen fuels in a spark-ignited engine was conducted. Additionally the study experimentally explored the thermal efficiency and emission reduction potential of hydrogen engines in lean combustion modes. The results indicated a significant improvement in the combustion rate when hydrogen fuel was utilized in the spark-ignited engine. However the effective thermal efficiency was found to be lower than that of gasoline fuel due to the delayed MBF50 under stoichiometric conditions. Furthermore when compared to gasoline fuel the reduction of CO and THC emissions was accompanied by an increase in NOx emissions. Nevertheless optimizing the air dilution ratio in hydrogen engines led to an improvement in the effective thermal efficiency. Specifically under medium load conditions a Lambda value of 2.7 resulted in an effective thermal efficiency of 43.5%. Additionally under ultra-lean conditions (Lambda > 2.3) NOx emissions could be reduced to below 50 ppm reaching as low as 44 ppm. This study highlights the potential of improving combustion efficiency and reducing emissions by utilizing hydrogen fuel particularly in lean combustion modes. It contributes to the continuous development of hydrogen engine technology and promotes the implementation of cleaner and more efficient energy solutions.
Low-Carbon Economic Scheduling of Hydrogen-Integrated Energy Systems with Enhanced Bilateral Supply–Demand Response Considering Vehicle to Grid Under Power-to-Gas–Carbon Capture System Coupling
Feb 2025
Publication
Hydrogen-Integrated energy systems (HIESs) are pivotal in driving the transition to a low-carbon energy structure in China. This paper proposes a low-carbon economic scheduling strategy to improve the operational efficiency and reduce the carbon emissions of HIESs. The approach begins with the implementation of a stepwise carbon trading framework to limit the carbon output of the system. This is followed by the development of a joint operational model that combines hydrogen energy use and carbon capture. To improve the energy supply flexibility of HIESs modifications to the conventional combined heat and power (CHP) unit are made by incorporating a waste heat boiler and an organic Rankine cycle. This results in a flexible CHP response model capable of adjusting both electricity and heat outputs. Furthermore a comprehensive demand response model is designed to optimize the flexible capacities of electric and thermal loads thereby enhancing demand-side responsiveness. The integration of electric vehicles (EVs) into the system is analyzed with respect to their energy consumption patterns and dispatch capabilities which improves their potential for flexible scheduling and enables an optimized synergy between the demand-side flexibility and system operations. Finally a low-carbon economic scheduling model for the HIES is developed with the objective of minimizing system costs. The results show that the proposed scheduling method effectively enhances the economy low-carbon performance and flexibility of HIES operation while promoting clean energy consumption deep decarbonization of the system and the synergistic complementarity of flexible supply–demand resources. In the broader context of expanding clean energy and growing EV adoption this study demonstrates the potential of energy-saving emissionreduction systems and vehicle-to-grid (V2G) strategies to contribute to the sustainable and green development of the energy sector.
A Comprehensive Review on the Hydrogen–Natural Gas–Diesel Tri-Fuel Engine Exhaust Emissions
Aug 2024
Publication
Natural gas (NG) is favored for transportation due to its availability and lower CO2 emissions than fossil fuels despite drawbacks like poor lean combustion ability and slow burning. According to a few recent studies using hydrogen (H2 ) alongside NG and diesel in Tri-fuel mode addresses these drawbacks while enhancing efficiency and reducing emissions making it a promising option for diesel engines. Due to the importance and novelty of this the continuation of ongoing research and insufficient literature studies on HNG–diesel engine emissions that are considered helpful to researchers this research has been conducted. This review summarizes the recent research on the HNG–diesel Tri-fuel engines utilizing hydrogen-enriched natural gas (HNG). The research methodology involved summarizing the effect of engine design operating conditions fuel mixing ratios and supplying techniques on the CO CO2 NOx and HC emissions separately. Previous studies show that using natural gas with diesel increases CO and HC emissions while decreasing NOx and CO2 compared to pure diesel. However using hydrogen with diesel reduces CO CO2 and HC emissions but increases NOx. On the other hand HNG–diesel fuel mode effectively mitigates the disadvantages of using these fuels separately resulting in decreased emissions of CO CO2 HC and NOx. The inclusion of hydrogen improves combustion efficiency reduces ignition delay and enhances heat release and in-cylinder pressure. Additionally operational parameters such as engine power speed load air–fuel ratio compression ratio and injection parameters directly affect emissions in HNG–diesel Tri-fuel engines. Overall the Tri-fuel approach offers promising emissions benefits compared to using natural gas or hydrogen separately as dual-fuels.
Research on the Dynamic Energy Conversion and Transmission Model of Renewable Energy DC Off-grid Hydrogen System
Sep 2024
Publication
The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation an energy hub model for the hydrogen production system is established yielding the electrical thermal and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time the energy flow at each time node within the hydrogen production system is computed revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.
No more items...