Applications & Pathways
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
Jul 2025
Publication
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production storage refueling and consumption technologies we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP which achieves 49.67% renewable energy contribution and an annual reduction of 22000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency multi-tier hydrogen storage systems and fuel cell applications for vehicles and power generation. Despite these achievements challenges such as high production costs infrastructure scalability and data integration gaps persist. The study underscores the importance of policy support technological innovation and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals.
Combustion and Specific Fuel Consumption Evaluation of a Single-cylinder Engine Fueled with Ethanol, Gasoline, and a Hydrogen-rich Mixture
Mar 2024
Publication
This study evaluates the effects of adding a hydrogen gaseous mixture (HGM) to primary fuel in a single cylinder research engine (SCRE). Storage and transportation of high-purity hydrogen limit the application of this gas. With the development of fuel reforming methods using hydrogenenriched mixtures in spark-ignited internal combustion engines is a convenient option to fossil fuels. Ethanol and gasoline were used as primary fuel by direct injection (DI) and gaseous mixture was added by fumigation system (FS). The experimental analysis was developed in Spark Ignition (SI) four-stroke engine 4 valves and 0.45 L of cubic capacity. For each operation condition and primary fuel spark timing and amount of HGM were adjusted in order to keep air-fuel ratio stochiometric (λ = 100). However the spark timing and the percentage of gas varied aiming to evaluate the behavior of the air-fuel mixture. It was evaluated the specific fuel consumption and the evolution of the combustion process. The results showed that the addition of reformed gas promotes acceleration of the combustion process ethanol and gasoline. Results were expressive when using ethanol. A reduction in fuel-specific consumption - for this fuel - with combustion centralized which did not occur when gasoline was employed.
Analysis of Hydrogen-fuelled Combustor Design for Micro Gas Turbine Applications: Performance, Emissions, and Stability Considerations
Oct 2025
Publication
To address global CO2 emissions and the intermittency of renewables hydrogen is emerging as a promising carbon-free fuel for micro gas turbines (MGTs) offering potential for grid stability and decarbonization. However its high flame speed and adiabatic temperature present challenges including flashback and elevated NOx emissions. Conventional combustors often lack the compactness and NOx control needed for MGT-scale systems. This study numerically investigates pure hydrogen combustion in a compact MGT combustor using a secondary air dilution strategy. Based on the experimental setup of Tanneberger et al. simulations were conducted in ANSYS Fluent using steady-state RANS equations a CRECK-based chemical mechanism and the Flamelet Generated Manifold (FGM) model. The parametric study explores three design variables swirler blockage (B) central fuel tube length (C) and fuel injection split (S) along with five secondary air configurations (T1–T5). Results show that the secondary air hole pattern significantly affects flow structure and temperature uniformity. Configuration T1 provided the most uniform exhaust and lowest NOx emissions due to better air penetration and earlier dilution. Higher B and S increased local flame temperature intensifying thermal NOx via the Zeldovich mechanism. The findings offer design guidance for stable low-emission hydrogen combustors suitable for compact MGT applications.
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
Aug 2025
Publication
The production of iron and steel plays a significant role in the anthropogenic carbon footprint accounting for 7% of global GHG emissions. In the context of CO2 mitigation the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR a detailed finite-volume model of the shaft furnace which can simulate the gas and solid flows heat transfers and reaction kinetics throughout the reactor with an extension that describes the whole gas circuit of the direct reduction plant including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet the use of high nitrogen content in the gas and the introduction of a hot solid burden) were investigated and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements.
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
Jul 2025
Publication
In response to increasingly stringent emission regulations low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels methane methanol hydrogen and ammonia by systematically summarizing their combustion characteristics and emission profiles along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines unburned hydrocarbon (UHC) produced during lowtemperature combustion exhibits poor oxidation reactivity necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC) particulate oxidation catalyst (POC) ozone-assisted oxidation and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC) DOC and POC. Although hydrogen combustion is carbon-free its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly while ammonia offers carbon-free combustion and benefits from easier storage and transportation its practical application is hindered by several challenges including low ignitability high toxicity and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies such as integrated NOx reduction via hydrogen or ammonia fuel utilization still face challenges of stability and narrow effective temperatures.
Optimization Operation Method for Hydrogen-compressed Natural Gas-Integrated Energy Systems Considering Hydrogen-Thermal Multi-Energy Inertia
Dec 2024
Publication
Hydrogen-enriched compressed natural gas (HCNG) holds significant promise for renewable energy absorption and hydrogen utilization while also increasing the complexity of Integrated Energy System (IES) structures which presents challenges for optimal HCNG-IES operation. Energy inertia provides IES with potential operational flexibility. However existing HCNG-IES optimization technologies inadequately account for hydrogen and thermal inertia leaving significant opportunities to enhance system performance. In this study we begin with a comprehensive analysis and modeling of the hydrogen-thermal multi-energy inertia (HTMEI) processes which encompass the hydrogen inertia of HCNG loads and hydrogen storage tanks as well as the thermal inertia of thermal storage tanks and buildings. Following this we develop an optimization model for the operation of HCNG-IES that incorporates HTMEI to optimize the system's overall performance in terms of economic environmental and energy efficiency criteria. The resulting optimal scheduling scheme integrates the outputs of energy devices and multi-energy inertia processes. Case studies validate the efficacy of the proposed operational optimization method. The results indicate that in comparison with an operational optimization method that does not consider energy inertia the proposed approach reduces operational costs by 34.79% carbon emissions by 32.93% electricity purchased from the grid by 95.37% and natural gas consumption by 11.8%. Furthermore the analysis has verified the mutual enhancement between hydrogen inertia and thermal inertia along with their positive individual impacts on operational performance of the HCNGIES.
The Hydrogen Revolution in Diesel Engines: A Comprehensive Review of Performance, Combustion, and Emissions
Aug 2025
Publication
Fossil fuels have been the conventional source of energy that has driven economic growth and industrial development for a long time. However their extensive use has led to immense environmental problems especially concerning the emission of greenhouse gases. These problems have stimulated researchers to turn their attention to renewable alternative fuels. Hydrogen has risen in recent years as a prospective energy carrier because it is possible to produce it in an environmentally friendly manner and because it is the most common element. Hydrogen may be used in diesel engines in a dual-fuel mode. Hydrogen has a higher heating value flame speed and diffusivity in air. These superior fuel properties can enhance performance and combustion efficiency. Hydrogen can decrease carbon monoxide unburned hydrocarbons and soot emissions due to the absence of carbon in hydrogen. However hydrogen-fuelled diesel engines have problems such as engine knocking and high nitrogen oxide emission. This paper presents a comprehensive review of the recent literature on the performance combustion and emission characteristics of hydrogen-fuelled diesel engines. Moreover this paper discusses the long-term sustainability of hydrogen production methods nitrogen oxide emission reduction techniques challenges to the large-scale use of hydrogen economic implications of hydrogen use safety issues in hydrogen applications regulations on hydrogen safety conflicting NOx emission results in the literature and material incompatibility issues in hydrogen applications. This study highlights state-of-the-art developments along with critical knowledge gaps that will be useful in guiding future research. These findings can support researchers and industry professionals in the integration of hydrogen into both existing and future diesel engine technologies. According to the literature the use of hydrogen up to 46% decreased smoke emissions by over 75% while CO2 and CO emissions significantly decreased. Moreover hydrogen addition improved thermal efficiency up to 7.01% and decreased specific fuel consumption up to 7.19%.
An Experimental Study of Jet-wall and Jet-jet Interactions of Directly Injected Hydrogen and Methane in a Wave-piston Geometry
Oct 2025
Publication
This study investigates the interactive dynamics of directly injected (DI) hydrogen and methane jets with wall and neighboring jets in a non-reactive environment focusing on the influence of wave-shaped piston geometry. Experiments were conducted in a high-pressure optical chamber using a custom 2-hole DI injector with Schlieren imaging employed to capture the temporal evolution of jet structures for varying injection durations and injection pressure ratios. Comparative analyses between conventional flat and wave-shaped wall geometries reveals that the wave geometry significantly alters post-impingement jet behavior particularly enhancing jet guidance toward the center and promoting early detachment from the wall. For both hydrogen and methane jets impinging on the wave wall exhibited accelerated formation of a central flow structure akin to the radial mixing zone (RMZ) observed in reactive diesel combustion. This effect was most pronounced after end of injection where the trailing edge of the impinged jets in the wave geometry detached earlier and exhibited inward momentum forming U-shaped flow patterns indicative of efficient mixing. Quantitative jet area analysis further showed that the wave geometry confined and redirected the jets more effectively than the flat wall especially for hydrogen at shorter injection durations. These results demonstrate that the wave-piston concept originally developed for soot reduction in diesel engines also enhances jet-jet and jet-wall interaction efficiency in gaseous DI systems by promoting structured recirculation. Moreover these results suggest that wave-based piston geometries can substantially influence fuel-air mixing dynamics even in the absence of combustion providing a foundation for optimizing combustion chamber designs for low-carbon and high-diffusive gaseous fuels.
Minimum Hydrogen Consumption Energy Management for Hybrid Fuel Cell Ships Using Improved Weighted Antlion Optimization
Oct 2025
Publication
Energy management in hybrid fuel cell ship systems faces the dual challenges of optimizing hydrogen consumption and ensuring power quality. This study proposes an Improved Weighted Antlion Optimization (IW-ALO) algorithm for multi-objective problems. The method incorporates a dynamic weight adjustment mechanism and an elite-guided strategy which significantly enhance global search capability and convergence performance. By integrating IW-ALO with the Equivalent Consumption Minimization Strategy (ECMS) an improved weighted ECMS (IW-ECMS) is developed enabling real-time optimization of the equivalence factor and ensuring efficient energy sharing between the fuel cell and the lithium-ion battery. To validate the proposed strategy a system simulation model is established in Matlab/Simulink 2017b. Compared with the rule-based state machine control and optimization-based ECMS methods over a representative 300 s ferry operating cycle the IW-ECMS achieves a hydrogen consumption reduction of 43.4% and 42.6% respectively corresponding to a minimum total usage of 166.6 g under the specified load profile while maintaining real-time system responsiveness. These reductions reflect the scenario tested characterized by frequent load variations. Nonetheless the results highlight the potential of IW-ECMS to enhance the economic performance of ship power systems and offer a novel approach for multi-objective cooperative optimization in complex energy systems.
Detonation Processes Application to Increase Thermal Efficiency in Gas Turbine Cycles: Case Study for Hydrogen Enriched Fuels
Dec 2024
Publication
This work describes a thermodynamic comparison of the thermal efficiency of gas turbine engines featuring a conventional combustion chamber and a detonation combustion chamber using methane ethanol and mixtures of both ethanol and hydrogen and methane and hydrogen as fuels. The composition of gases was determined by the minimization of the Gibbs free energy whereas temperature pressure and velocity of detonation waves were determined by the Chapman-Jouguet theory. The results obtained here show that the DCC gas turbine cycle has a higher net work output and thermal efficiency than the CCC gas turbine cycle for all fuels studied in this work. The maximum thermal efficiency obtained with the DCC gas turbine cycle is indeed 57.22% which represents a 53.75% improvement over the maximum thermal efficiency obtained with the CCC gas turbine cycle (which has a peak thermal efficiency of 37.22%) under the same pressure ratio and turbine inlet temperature.
Low-Carbon Hydrogen Production and Use on Farms: European and Global Perspectives
Oct 2025
Publication
This article examines the growing potential of low-emission hydrogen as an innovative solution supporting the decarbonization of the agricultural sector. It discusses its potential applications on farms including as an energy source for powering agricultural machinery producing fertilizers and storing energy from renewable sources. Within the European context it considers actions arising from the European Green Deal and the “Fit for 55” strategy which promote the development of hydrogen infrastructure and support research into low-emission technologies. The article also discusses global initiatives and trends in the development of the hydrogen economy pointing to international cooperation investment and the need for technology standardization. It highlights the challenges related to cost infrastructure and scalability as well as the opportunities hydrogen offers for a sustainable and energy-efficient agriculture of the future.
Adaptive Hydrogen Fuel Cell Vehicle Scheduling Strategy Based on Traffic State Assessment in Power-Transportation Coupled Networks
Aug 2025
Publication
As the global demand for energy increases and the transition to renewable and clean sources accelerates microgrid (MG) has emerged as a promising solution. Hydrogen fuel cell vehicles (HFCVs) offer significant advantages over gasoline vehicles in terms of reducing carbon dioxide emissions. However the development of HFCVs is hindered by the substantial up-front costs of hydrogen refueling stations (HRSs) coupled with the high cost of hydrogen transportation and the limitations of the hydrogen supply chain. This research proposes a multimicrogrid (MMG) system that integrates hydrogen energy and utilizes it as the HRS for fuel vehicle refueling. An adaptive hydrogen energy management method is employed for fuel cell vehicles to optimize the coupling between the transportation network and the power system. An integrated transportation state assessment model is developed and a smart MMG system is deployed to receive information from the transportation network. Building on this foundation an adaptive hydrogen scheduling model is developed. HFCVs are influenced by the hydrogen price adjustments leading them to travel to different MGs for refueling which in turn regulates the unit output of the MMG system. The MMG system is then integrated with the IEEE 33 bus distribution system to analyze the daily load balance. This integrated approach results in reduced traffic congestion lower MG costs and optimized power distribution network load balance.
Techno-economic Evaluation of Retrofitting Power-to-methanol: Grid-connected Energy Arbitrage vs Standalone Renewable Energy
Aug 2025
Publication
The power-to-methanol (PtMeOH) will play a crucial role as a form of renewable chemical energy storage. In this paper PtMeOH techno-economics are assessed using the promising configuration from the previous work (Mbatha et al. [1]). This study evaluated the effect of parameters such as the CO2 emission tax electricity price and CAPEX reduction on the product methanol economic parity with respect to a reference case. Superior to previous economic studies a scenario where an existing methanol synthesis infrastructure is 100 % retrofitted with the promising electrolyser is assessed in terms of its economics and the associated economic parity. The volatile South African electricity market is considered as a case study. The sensitivity of the PtMeOH and green H2 profitability are checked. Grid-connected and standalone renewable energy PtMeOH scenarios are assessed. Foremost generalisable effect trends of these parameters on the net present value (NPV) and the levelized cost of methanol(LCOMeOH) and H2 (LCOH2) are discussed. The results show that economic parity of H2 (LCOH2 = current selling price = 4.06 €/kg) can be reached with an electricity price of 30 €/MWh and 70 % of the CAPEX. While the LCOMeOH will still be above 2 €/kg at 80 % of the CAPEX and electricity price of 20 €/MWh. This indicates that even if the CAPEX reduces to 20 % of its original in this study and the electricity price reduces to about 20 €/MWh the LCOMEOH will still not reach economic parity (LCOMeOH > current selling price = 0.44 €/kg). The results show that to make the retrofitted plant with a minimum of 20 years of life span profitable a feasible reduction in the electricity price to below 10 €/MWh along with favourable incentives such as CO2 credit and reduction in CAPEX particularly that of the electrolyser and treatment of the PtMeOH as a multiproduct plant will be required.
Reviewing Sector Coupling in Offshore Energy System Integration Modelling: The North Sea Context
Dec 2024
Publication
Offshore energy system integration is particularly important for realising a rapid and cost-effective low-carbon energy transition in the North Sea region. Effective implementation of strategies that require collaboration be tween countries developers and operators must be underpinned by robust and comprehensive modelling results. Intra-system interactions and diversity of sectors needed to facilitate the energy transition must be adequately captured within whole-system models. Historically consideration of the offshore energy environment within macro-scale models has been supplementary to the onshore system. However increased deployment of offshore wind focus on geological storage for energy security and technological development and investment in hydrogen and carbon storage projects highlights the importance of expanding the role of the offshore system within modelling. This study presents a comprehensive investigation of energy system integration challenges within offshore system modelling and how these define the requirements of the employed methodology. The findings suggest large-scale offshore system modelling studies typically include few energy vectors limited spatial resolution and simplified network flow characteristics. Despite the North Sea focus these challenges reflect fundamental barriers within large-scale offshore energy system modelling and thus extend to similar offshore contexts globally. Key approaches are identified to maximise sectoral and technological diversity while maintaining sufficient temporal and spatial resolution to suitably represent the evolving offshore system are identified. We make concrete suggestions for future work in this field based on identified best practice among the reviewed literature.
Integrating Scenario-based Stochastic-model Predictive Control and Load Forecasting for Energy Management of Grid-connected Hybrid Energy Storage Systems
Jun 2023
Publication
In the context of renewable energy systems microgrids (MG) are a solution to enhance the reliability of power systems. In the last few years there has been a growing use of energy storage systems (ESSs) such as hydrogen and battery storage systems because of their environmentally-friendly nature as power converter devices. However their short lifespan represents a major challenge to their commercialization on a large scale. To address this issue the control strategy proposed in this paper includes cost functions that consider the degradation of both hydrogen devices and batteries. Moreover the proposed controller uses scenarios to reflect the stochastic nature of renewable energy resources (RESs) and load demand. The objective of this paper is to integrate a stochastic model predictive control (SMPC) strategy for an economical/environmental MG coupled with hydrogen and battery ESSs which interacts with the main grid and external consumers. The system's participation in the electricity market is also managed. Numerical analyses are conducted using RESs profiles and spot prices of solar panels and wind farms in Abu Dhabi UAE to demonstrate the effectiveness of the proposed controller in the presence of uncertainties. Based on the results the developed control has been proven to effectively manage the integrated system by meeting overall constraints and energy demands while also reducing the operational cost of hydrogen devices and extending battery lifetime.
A Hybrid Robust-stochastic Approach for Optimal Scheduling of Interconnected Hydrogen-based Energy Hubs
Jan 2021
Publication
The energy hub (EH) concept is an efficient way to integrate various energy carriers. Inaddition demand response programmes (DRPs) are complementary to improving anEH's efficiency and increase energy system flexibility. The hydrogen storage system as agreen energy carrier has an essential role in balancing supply and demand preciselysimilar to other storage systems. A hybrid robust‐stochastic approach is applied herein toaddress fluctuations in wind power generation multiple demands and electricity marketprice in a hydrogen‐based smart micro‐energy hub (SMEH) with multi‐energy storagesystems. The proposed hybrid approach enables the operator to manage the existinguncertainties with more flexibility. Also flexible electrical and thermal demands under anintegrated demand response programme (IDRP) are implemented in the proposedSMEH. The optimal scheduling of the hydrogen‐based SMEH problem considering windpower generation and electricity market price fluctuations as well as IDRP is modelledvia a mixed‐integer linear programming problem. Finally the validity and applicability ofthe proposed model are verified through simulation and numerical results.
Hydrogen in Burners: Economic and Environmental Implications
Nov 2024
Publication
For centuries fossil fuels have been the primary energy source but their unchecked use has led to significant environmental and economic challenges that now shape the global energy landscape. The combustion of these fuels releases greenhouse gases which are critical contributors to the acceleration of climate change resulting in severe consequences for both the environment and human health. Therefore this article examines the potential of hydrogen as a sustainable alternative energy source capable of mitigating these climate impacts. It explores the properties of hydrogen with particular emphasis on its application in industrial burners and furnaces underscoring its clean combustion and high energy density in comparison to fossil fuels and also examines hydrogen production through thermochemical and electrochemical methods covering green gray blue and turquoise pathways. It discusses storage and transportation challenges highlighting methods like compression liquefaction chemical carriers (e.g. ammonia) and transport via pipelines and vehicles. Hydrogen combustion mechanisms and optimized burner and furnace designs are explored along with the environmental benefits of lower emissions contrasted with economic concerns like production and infrastructure costs. Additionally industrial and energy applications safety concerns and the challenges of large-scale adoption are addressed presenting hydrogen as a promising yet complex alternative to fossil fuels.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Synergy-based Hydrogen Pricing in Hydrogen-Integrated Electric Power System: Sensititivy Analysis
Nov 2024
Publication
Hydrogen price significantly impacts its potential as a viable alternative in the sustainable energy transition. This study introduces a synergy-based Hydrogen Pricing Mechanism (HPM) within an integrated framework. The HPM leverages synergy between a Renewable-Penetrated Electric Power System (RP-EPS) and a Hydrogen Energy System (HES). Utilizing the Alternating Direction Method of Multipliers (ADMM) it facilitates data exchange quantifying integration levels and simplifying the complexities. The study assesses the HPM’s operational sensitivity across various scenarios of hydrogen generation transportation and storage. It also evaluates the benefits of synergy-based versus stand-alone HPMs. Findings indicate that the synergy-based HPM effectively integrates infrastructure and operational improvements from both EPS and HES leading to optimized hydrogen pricing.
Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production
Feb 2024
Publication
To improve the recovery of waste heat and avoid the problem of abandoning wind and solar energy a multi-energy complementary distributed energy system (MECDES) is proposed integrating waste heat and surplus electricity for hydrogen storage. The system comprises a combined cooling heating and power (CCHP) system with a gas engine (GE) solar and wind power generation and miniaturized natural gas hydrogen production equipment (MNGHPE). In this novel system the GE’s waste heat is recycled as water vapor for hydrogen production in the waste heat boiler while surplus electricity from renewable sources powers the MNGHPE. A mathematical model was developed to simulate hydrogen production in three building types: offices hotels and hospitals. Simulation results demonstrate the system’s ability to store waste heat and surplus electricity as hydrogen thereby providing economic benefit energy savings and carbon reduction. Compared with traditional energy supply methods the integrated system achieves maximum energy savings and carbon emission reduction in office buildings with an annual primary energy reduction rate of 49.42–85.10% and an annual carbon emission reduction rate of 34.88–47.00%. The hydrogen production’s profit rate is approximately 70%. If the produced hydrogen is supplied to building through a hydrogen fuel cell the primary energy reduction rate is further decreased by 2.86–3.04% and the carbon emission reduction rate is further decreased by 12.67–14.26%. This research solves the problem of waste heat and surplus energy in MECDESs by the method of hydrogen storage and system integration. The economic benefits energy savings and carbon reduction effects of different building types and different energy allocation scenarios were compared as well as the profitability of hydrogen production and the factors affecting it. This has a positive technical guidance role for the practical application of MECDESs.
No more items...