Applications & Pathways
An Innovatively Designed Community-based Hybrid Energy System to Generate its Needs of Electricity, Heat, Hot Water and Hydrogen in a Sustainable Manner
Jun 2025
Publication
This study introduces an innovative nuclear-biomass integrated energy and cleaner production multigeneration system incorporating sonohydrogen technology and a desalination unit for the sustainable and efficient production of hydrogen electricity hot water and heat. A small modular nuclear reactor acts as the primary energy source ensuring stable and low-carbon power generation while enhancing hydrogen yield through sonochemical processes. Biomass-derived biogas is strategically utilized for both electricity generation and hydrogen production via steam methane reforming. The heat wasted in the system is efficiently utilized. A high-performance multistage flash desalination unit converts some of the waste heat into desalinated seawater. In addition a portion of the waste heat is utilized for heat production. The results of this study show that the overall energy and exergy efficiencies of the integrated system are 82.7 % and 68.3 % respectively. Through detailed energy and exergy assessments the study demonstrates the feasibility of the proposed system in enhancing energy conversion efficiency improving waste heat utilization and increasing sustainability. In addition the results of the cost assessment show that the integrated energy system is economically viable in the long term with hydrogen production driving substantial annual revenue and profitability projected within the first decade of operation. The findings highlight the system’s potential to contribute to cleaner energy production by reducing greenhouse gas emissions maximizing resource efficiency and advancing hydrogen and freshwater production technologies.
Roadmap for the Decarbonization of Domestic Passenger Ferries in the Republic of Korea
Feb 2025
Publication
This study examines the steps to lower air emissions in South Korea’s domestic shipping sector. It highlights the significant contributions of the sector to air pollution and greenhouse gas emissions emphasizing its impact on environmental sustainability and climate change mitigation. By looking at the current shipping energy use and emissions the research identifies ways to reduce the environmental impact of domestic shipping. Data was collected from domestic ferry routes and the fuel use was reviewed with respect to existing global technologies for reducing emissions. The results show that operational changes and current energy-efficient technologies can quickly cut emissions. Furthermore a long-term plan is suggested involving the development of new ship designs and the use of net-zero fuels like biofuels methanol hydrogen and ammonia. These efforts aim to meet climate goals targeting a 40% reduction in greenhouse emissions by 2030 and a 70% reduction by 2050 making South Korea’s shipping industry more sustainable and resilient.
A Multi-agent Optimal Operation Methodology of Electric, Thermal, and Hydrogen Integrated Energy System based on ADMM Algorithm
Aug 2024
Publication
This article presents a study on the distributed optimization operation method for micro-energy grid clusters within an electric thermal and hydrogen integrated energy system. The research focuses on precisely modeling the Power-toHydrogen (P2H) conversion process in electrolytic cells by considering their startup characteristics. An optimization operation model is established with each micro-energy grid as the principal entity to cater to their individual interests and demands. The Alternating Direction Method of Multipliers (ADMM) algorithm is adopted for distributed solution. Case studies demonstrate that the connection topology between micro-energy grids significantly impacts the total operating cost and the effectiveness of the ADMM algorithm is validated through a comparison with centralized optimization approaches.
Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends
Sep 2023
Publication
Compression ignition engines will still be predominant in the naval sector: their high efficiency high torque and heavy weight perfectly suit the demands and architecture of ships. Nevertheless recent emission legislations impose limitations to the pollutant emissions levels in this sector as well. In addition to post-treatment systems it is necessary to reduce some pollutant species and therefore the study of combustion strategies and new fuels can represent valid paths for limiting environmental harmful emissions such as CO2 . The use of methane in dual fuel mode has already been implemented on existent vessels but the progressive decarbonization will lead to the utilization of carbon-neutral or carbon-free fuels such as in the last case hydrogen. Thanks to its high reactivity nature it can be helpful in the reduction of exhaust CH4 . On the contrary together with the high temperatures achieved by its oxidation hydrogen could cause uncontrolled ignition of the premixed charge and high emissions of NOx. As a matter of fact a source of ignition is still necessary to have better control on the whole combustion development. To this end an optimal and specific injection strategy can help to overcome all the before-mentioned issues. In this study three-dimensional numerical simulations have been performed with the ANSYS Forte® software (version 19.2) in an 8.8 L dual fuel engine cylinder supplied with methane hydrogen or hydrogen–methane blends with reference to experimental tests from the literature. A new kinetic mechanism has been used for the description of diesel fuel surrogate oxidation with a set of reactions specifically addressed for the low temperatures together with the GRIMECH 3.0 for CH4 and H2 . This kinetics scheme allowed for the adequate reproduction of the ignition timing for the various mixtures used. Preliminary calculations with a one-dimensional commercial code were performed to retrieve the initial conditions of CFD calculations in the cylinder. The used approach demonstrated to be quite a reliable tool to predict the performance of a marine engine working under dual fuel mode with hydrogen-based blends at medium load. As a result the system modelling shows that using hydrogen as fuel in the engine can achieve the same performance as diesel/natural gas but when hydrogen totally replaces methane CO2 is decreased up to 54% at the expense of the increase of about 76% of NOx emissions.
Performance, Emissions, and Economic Analyses of Hydrogen Fuel Cell Vehicles
May 2024
Publication
The transport sector is considered to be a significant contributor to greenhouse gas emissions as this sector emits about one-fourth of global CO2 emissions. Transport emissions contribute toward climate change and have been linked to adverse health impacts. Therefore alternative and sustainable transport options are urgent for decarbonising the transport sector and mitigating those issues. Hydrogen fuel cell vehicles are a potential alternative to conventional vehicles which can play a significant role in decarbonising the future transport sector. This study critically analyses the recent works related to hydrogen fuel cell integration into vehicles modelling and experimental investigations of hydrogen fuel cell vehicles with various powertrains. This study also reviews and analyses the performance energy management strategies lifecycle cost and emissions of fuel cell vehicles. Previous literature suggested that the fuel consumption and well-to-wheel greenhouse gas emissions of hydrogen fuel cell-powered vehicles are significantly lower than that of conventional internal combustion vehicles. Hydrogen fuel cell vehicles consume about 29–66 % less energy and cause approximately 31–80 % less greenhouse gas emissions than conventional vehicles. Despite this the lifecycle cost of hydrogen fuel cell vehicles has been estimated to be 1.2–12.1 times higher than conventional vehicles. Even though there has been recent progress in energy management in hydrogen fuel cell electric vehicles there are a number of technical and economic challenges to the commercialisation of hydrogen fuel cell vehicles. This study presents current knowledge gaps and details future research directions in relation to the research advancement of hydrogen fuel cell vehicles.
Hydrogen-fuelled Internal Combustion Engines: Direct Injection Versus Port-fuel Injection
Jul 2024
Publication
The road-transport is one of the major contributors to greenhouse global gas (GHG) emissions where hydrogen (H2) combustion engines can play a crucial role in the path towards the sector’s decarbonization goal. This study focuses on comparing the performance and emissions of port-fuel injection (PFI) and direct injection (DI) in a spark ignited combustion engine when is fuelled by hydrogen and other noteworthy fuels like methane and coke oven gas (COG). Computational fluid dynamic simulations are performed at optimal spark advance and air-fuel ratio (λ) for engine speeds between 2000 and 5000 rpm. Analysis reveals that brake power increases by 40% for DI attributed to 30.6% enhanced volumetric efficiency while the sNOx are reduced by 36% compared to PFI at optimal λ = 1.5 for hydrogen. Additionally H2 results in 71.8% and 67.2% reduction in fuel consumption compared to methane and COG respectively since the H2 lower heating value per unit of mass is higher.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Toward Sustainability: An Overview of the Use of Green Hydrogen in the Agriculture and Livestock Sector
Aug 2023
Publication
The agro-livestock sector produces about one third of global greenhouse gas (GHG) emissions. Since more energy is needed to meet the growing demand for food and the industrial revolution in agriculture renewable energy sources could improve access to energy resources and energy security reduce dependence on fossil fuels and reduce GHG emissions. Hydrogen production is a promising energy technology but its deployment in the global energy system is lagging. Here we analyzed the theoretical and practical application of green hydrogen generated by electrolysis of water powered by renewable energy sources in the agro-livestock sector. Green hydrogen is at an early stage of development in most applications and barriers to its large-scale deployment remain. Appropriate policies and financial incentives could make it a profitable technology for the future.
Fuzzy Logic-Based Energy Management Strategy for Hybrid Fuel Cell Electric Ship Power and Propulsion System
Oct 2024
Publication
The growing use of proton-exchange membrane fuel cells (PEMFCs) in hybrid propulsion systems is aimed at replacing traditional internal combustion engines and reducing greenhouse gas emissions. Effective power distribution between the fuel cell and the energy storage system (ESS) is crucial and has led to a growing emphasis on developing energy management systems (EMSs) to efficiently implement this integration. To address this goal this study examines the performance of a fuzzy logic rule-based strategy for a hybrid fuel cell propulsion system in a small hydrogenpowered passenger vessel. The primary objective is to optimize fuel efficiency with particular attention on reducing hydrogen consumption. The analysis is carried out under typical operating conditions encountered during a river trip. Comparisons between the proposed strategy with other approaches—control based optimization based and deterministic rule based—are conducted to verify the effectiveness of the proposed strategy. Simulation results indicated that the EMS based on fuzzy logic mechanisms was the most successful in reducing fuel consumption. The superior performance of this method stems from its ability to adaptively manage power distribution between the fuel cell and energy storage systems.
Hydrogen Refuelling Station Calibration with a Traceable Gravimetric Standard
Apr 2020
Publication
Of all the alternatives to hydrocarbon fuels hydrogen offers the greatest long-term potential to radically reduce the many problems inherent in fuel used for transportation. Hydrogen vehicles have zero tailpipe emissions and are very efficient. If the hydrogen is made from renewable sources such as nuclear power or fossil sources with carbon emissions captured and sequestered hydrogen use on a global scale would produce almost zero greenhouse gas emissions and greatly reduce air pollutant emissions. The aim of this work is to realise a traceability chain for hydrogen flow metering in the range typical for fuelling applications in a wide pressure range with pressures up to 875 bar (for Hydrogen Refuelling Station - HRS with Nominal Working Pressure of 700 bar) and temperature changes from −40 °C (pre-cooling) to 85 °C (maximum allowed vehicle tank temperature) in accordance with the worldwide accepted standard SAE J2601. Several HRS have been tested in Europe (France Netherlands and Germany) and the results show a good repeatability for all tests. This demonstrates that the testing equipment works well in real conditions. Depending on the installation configuration some systematic errors have been detected and explained. Errors observed for Configuration 1 stations can be explained by pressure differences at the beginning and end of fueling in the piping between the Coriolis Flow Meter (CFM) and the dispenser: the longer the distance the bigger the errors. For Configuration 2 where this distance is very short the error is negligible.
Detailed Analysis of a Pure Hydrogen-fueled Dual-fuel Engine in Terms of Performance and Greenhouse Gas Emissions
Sep 2024
Publication
The current study seeks to greenhouse gas emissions reduction in an existing engine under dual-fuel combustion fueled with diesel fuel and natural gas due to great concerns about global warming. This simulation study focuses on the identification of areas prone to the formation of greenhouse gas emissions in engine cylinders. The simulation results of dual-fuel combustion confirmed that the possibility of incomplete combustion and the formation of greenhouse gas emissions in high levels are not far from expected. Therefore an efficient combustion strategy along with replacing natural gas with hydrogen was considered. Only changing the combustion mode to reactivity-controlled compression ignition has led to the improvement of the natural gas burning rate and guarantees a 32 % reduction in unburned methane and 50 % carbon monoxide. To further reduce engine emissions while changing the combustion mode a part of natural gas replacement with hydrogen to the complete elimination of it was evaluated. Increasing the share of hydrogen energy in the intake air-natural gas mixture up to 54 % without exhaust gas recirculation does not lead to diesel knock. Moreover improvement of engine load and efficiency can be achieved by up to 18 % and 6 % respectively. Natural gas consumption can be reduced by up to 67 %. Meanwhile the unburned methane and carbon dioxide mass known as greenhouse gas emissions can be reduced to less than 1 % and up to 50 % respectively. Continued replacement of natural gas with hydrogen until its complete elimination guarantees a reduction of 92000 cubic meters of natural gas per year in one engine cylinder. Although the engine efficiency and load face a decrease of 0.8 % and 5.0 % respectively; the amount of carbon dioxide can be decreased by about 4.5 times. Unburned methane carbon monoxide and nitrogen oxides can be reduced to below the relevant EURO VI range while the amount of unburned hydrogen compared to the hydrogen entering the engine is about 0.5 %.
Collaborative Control Strategy of Electric–Thermal–Hydrogen-Integrated Energy System Based on Variable-Frequency Division Coefficient
Dec 2024
Publication
To address the issues of diverse energy supply demands and power fluctuations in integrated energy systems (IESs) this study takes an IES composed of power-generation units such as wind and photovoltaic units along with various energy-storage systems including electrical thermal and hydrogen storage as the research subject. A collaborative control strategy is proposed for the IES which comprehensively considers the status of diverse energy-storage systems like battery packs thermal tanks and hydrogen tanks. First a mathematical model of the IES is constructed. Then a dual-layer collaborative control strategy is designed considering different operating modes of the IES which includes a multi-energy-storage power allocation control layer based on second-order power-frequency processing and distribution and an adaptive adjustment layer for adjusting powerfrequency coefficients based on adaptive fuzzy control. Finally MATLAB is used to simulate and validate the proposed strategy. The results indicate that the collaborative control strategy based on variable-frequency coefficients optimizes the allocation of fluctuating power among multiple energy-storage systems enhances the stability of bus voltage reduces the deep charge and discharge time of battery packs and extends the service life of battery packs.
Conceptual Design-optimisation of a Subsonic Hydrogen-powered Long-range Blended-wing-body Aircraft
Nov 2024
Publication
The adoption of liquid hydrogen (LH2) holds promise for decarbonising long-range aviation. LH2 aircraft could weigh less than Jet-A aircraft thereby reducing the thrust requirement. However the lower volumetric energy density of LH2 can adversely impact the aerodynamic performance and energy consumption of tube-wing aircraft. In a first this work conducts an energy performance modelling of a futuristic (2030+) LH2 blendedwing-body (BWB) aircraft (301 passengers and 13890 km) using conceptual aircraft design-optimisation approach employing weight-sizing methods while considering the realistic gravimetric and volumetric energy density effects of LH2 on aircraft design and the resulting reduction in aircraft thrust requirement. This study shows that at the design point the futuristic LH2 BWB aircraft reduces the specific energy consumption (SEC MJ/ tonne-km) by 51.7–53.5% and 7.3–10.8% compared to (Jet-A) Boeing 777-200LR and Jet-A BWB respectively. At the off-design points this study shows that by increasing the load factor for a given range and/or increasing range for all load factor cases the SEC (or energy efficiency) of this LH2 BWB concept improves. The results of this work will inform future studies on use-phase emissions and contrails modelling LH2 aircraft operations for contrail reduction estimation of operating costs and lifecycle climate impacts.
Research on Energy Management of Hydrogen Fuel Cell Bus Based on Deep Reinforcement Learning Considering Velocity Control
Aug 2023
Publication
In the vehicle-to-everything scenario the fuel cell bus can accurately obtain the surrounding traffic information and quickly optimize the energy management problem while controlling its own safe and efficient driving. This paper proposes an energy management strategy (EMS) that considers speed control based on deep reinforcement learning (DRL) in complex traffic scenarios. Using SUMO simulation software (Version 1.15.0) a two-lane urban expressway is designed as a traffic scenario and a hydrogen fuel cell bus speed control and energy management system is designed through the soft actor–critic (SAC) algorithm to effectively reduce the equivalent hydrogen consumption and fuel cell output power fluctuation while ensuring the safe efficient and smooth driving of the vehicle. Compared with the SUMO–IDM car-following model the average speed of vehicles is kept the same and the average acceleration and acceleration change value decrease by 10.22% and 11.57% respectively. Compared with deep deterministic policy gradient (DDPG) the average speed is increased by 1.18% and the average acceleration and acceleration change value are decreased by 4.82% and 5.31% respectively. In terms of energy management the hydrogen consumption of SAC–OPT-based energy management strategy reaches 95.52% of that of the DP algorithm and the fluctuation range is reduced by 32.65%. Compared with SAC strategy the fluctuation amplitude is reduced by 15.29% which effectively improves the durability of fuel cells.
Life Cycle Assessment Comparison of Orchard Tractors Powered by Diesel and Hydrogen Fuel Cell
Sep 2024
Publication
To reduce the impact of the agricultural sector on the environment human health and resource depletion several steps should be taken to develop innovative powertrain systems. The agricultural sector must be involved in this innovation since diesel-powered tractors are an important source in terms of pollution. In this context fuel-cell systems have gained importance making them one of the possible substitutes due to their characteristics featuring almost zero local emissions low refueling time and high efficiency. However to effectively assess the sustainability of a fuel-cell tractor a cradle-to-grave life cycle assessment comprising production use phase and end of life must be performed. This article presents a comparative analysis according to different impact categories of the life cycle impacts of a traditional diesel-powered tractor and a fuel-cell hybrid tractor designed considering operative requirements and functional constraints. The study was conducted according to the LCA technique (defined by ISO 14040 and ISO 14044 standards) combining secondary data mainly derived from studies and reports available in the literature with the use of the Ecoinvent 3.0 database. The results are presented according to ten different impact categories defined by ReCiPe 2016 v 1.03 at the midpoint level. The findings obtained showed that the fuel-cell tractor allows for a relevant reduction in all the considered categories. The highest-impact reduction more than 92% was obtained in the human toxicity non-carcinogenic category while the lowest reduction around 4.55% was observed for the fossil fuel scarcity category mainly due to the adoption of gray hydrogen which is produced from fossil fuels. As for the climate change category the fuel-cell tractor showed a reduction of more than 34% in the life cycle impact. Finally the authors also considered the case of green hydrogen produced using solar energy. In this case further reductions in the impact on climate change and fossil fuel resource depletion were obtained. However for the other impact categories the results were worse compared to using gray hydrogen.
Techno-economic Assessment of Hydrogen Supply Solutions for Industrial Site
Sep 2024
Publication
In Austria one of the highest priorities of hydrogen usage lies in the industrial sector particularly as a feedstock and for high-temperature applications. Connecting hydrogen producers with consumers is challenging and requires comprehensive research to outline the advantages and challenges associated with various hydrogen supply options. This study focuses on techno-economic assessment of different supply solutions for industrial sites mainly depicted in two categories: providing hydrogen by transport means and via on-site production. The technologies needed for the investigation of these scenarios are identified based on the predictions of available technologies in near future (2030). The transportation options analyzed include delivering liquid hydrogen by truck liquid hydrogen by railway and gaseous hydrogen via pipeline. For on-site low-carbon hydrogen production a protonexchange membrane (PEM) electrolysis was selected as resent research suggests lower costs for PEM electrolysis compared to alkaline electrolysis (AEL). The frequency of deliveries and storage options vary by scenario and are determined by the industrial demand profile transport capacity and electrolyser production capacity. The assessment evaluates the feasibility and cost-effectiveness of each option considering factors such as infrastructure requirements energy efficiency and economic viability. At a hydrogen demand of 80 GWh the transport options indicate hydrogen supply costs in the range of 14–24 ct/kWh. In contrast the scenarios investigating on-site production of hydrogen show costs between 29 and 49 ct/ kWh. Therefore transport by truck rail or pipeline is economically advantageous to own-production under the specific assumptions and conditions. However the results indicate that as energy demand increases on-site production becomes more attractive. Additionally the influence of electricity prices and the hydrogen production/import price were identified as decisive factors for the overall hydrogen supply costs.
Design and Performance Optimization of a Radial Turbine Using Hydrogen Combustion Products
Dec 2024
Publication
The combustion of hydrogen increases the water content of the combustion products affecting the aerodynamic performance of turbines using hydrogen as a fuel. This study aims to design a radial turbine using the differential evolution (DE) algorithm to improve its characteristics and optimize its aerodynamic performance through an orthogonal experiment and analysis of means (ANOM). The effects of varying water content in combustion products ranging from 12% to 22% on the performance of the radial turbine are also investigated. After optimization the total–static efficiency of the radial turbine increased to 89.12% which was 1.59% higher than the preliminary design. The study found that flow loss in the impeller primarily occurred at the leading edge trailing edge and the inlet of the suction surface tip and outlet. With a 10% increase in water content the enthalpy dropped Mach number increased and turbine power increased by 4.64% 1.71% and 2.41% respectively. However the total static efficiency and mass flow rate decreased by 0.71% and 2.13% respectively. These findings indicate that higher water content in hydrogen combustion products enhances the turbine’s output power while reducing the combustion products’ mass flow rate.
The Bio Steel Cycle: 7 Steps to Net-Zero CO2 Emissions Steel Production
Nov 2022
Publication
CO2 emissions have been identified as the main driver for climate change with devastating consequences for the global natural environment. The steel industry is responsible for ~7–11% of global CO2 emissions due to high fossil-fuel and energy consumption. The onus is therefore on industry to remedy the environmental damage caused and to decarbonise production. This desk research report explores the Bio Steel Cycle (BiSC) and proposes a seven-step-strategy to overcome the emission challenges within the iron and steel industry. The true levels of combined CO2 emissions from the blast-furnace and basic-oxygen-furnace operation at 4.61 t of CO2 emissions/t of steel produced are calculated in detail. The BiSC includes CO2 capture implementing renewable energy sources (solar wind green H2 ) and plantation for CO2 absorption and provision of biomass. The 7-step-implementation-strategy starts with replacing energy sources develops over process improvement and installation of flue gas carbon capture and concludes with utilising biogas-derived hydrogen as a product from anaerobic digestion of the grown agrifood in the cycle. In the past CO2 emissions have been seemingly underreported and underestimated in the heavy industries and implementing the BiSC using the provided seven-steps-strategy will potentially result in achieving net-zero CO2 emissions in steel manufacturing by 2030.
Advancements in Hydrogen Production, Storage, Distribution and Refuelling for a Sustainable Transport Sector: Hydrogen Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen is considered as a promising fuel in the 21st century due to zero tailpipe CO2 emissions from hydrogen-powered vehicles. The use of hydrogen as fuel in vehicles can play an important role in decarbonising the transport sector and achieving net-zero emissions targets. However there exist several issues related to hydrogen production efficient hydrogen storage system and transport and refuelling infrastructure where the current research is focussing on. This study critically reviews and analyses the recent technological advancements of hydrogen production storage and distribution technologies along with their cost and associated greenhouse gas emissions. This paper also comprehensively discusses the hydrogen refuelling methods identifies issues associated with fast refuelling and explores the control strategies. Additionally it explains various standard protocols in relation to safe and efficient refuelling analyses economic aspects and presents the recent technological advancements related to refuelling infrastructure. This study suggests that the production cost of hydrogen significantly varies from one technology to others. The current hydrogen production cost from fossil sources using the most established technologies were estimated at about $0.8–$3.5/kg H2 depending on the country of production. The underground storage technology exhibited the lowest storage cost followed by compressed hydrogen and liquid hydrogen storage. The levelised cost of the refuelling station was reported to be about $1.5–$8/kg H2 depending on the station's capacity and country. Using portable refuelling stations were identified as a promising option in many countries for small fleet size low-to-medium duty vehicles. Following the current research progresses this paper in the end identifies knowledge gaps and thereby presents future research directions.
Assessing the Potential of Hybrid Systems with Batteries, Fuel Cells and E-Fuels for Onboard Generation and Propulsion in Pleasure Vessels
Dec 2024
Publication
Electro-fuels (E-fuels) represent a potential solution for decarbonizing the maritime sector including pleasure vessels. Due to their large energy requirements direct electrification is not currently feasible. E-fuels such as synthetic diesel methanol ammonia methane and hydrogen can be used in existing internal combustion engines or fuel cells in hybrid configurations with lithium batteries to provide propulsion and onboard electricity. This study confirms that there is no clear winner in terms of efficiency (the power-to-power efficiency of all simulated cases ranges from 10% to 30%) and the choice will likely be driven by other factors such as fuel cost onboard volume/mass requirements and distribution infrastructure. Pure hydrogen is not a practical option due to its large storage necessity while methanol requires double the storage volume compared to current fossil fuel solutions. Synthetic diesel is the most straightforward option as it can directly replace fossil diesel and should be compared with biofuels. CO2 emissions from E-fuels strongly depend on the electricity source used for their synthesis. With Italy’s current electricity mix E-fuels would have higher impacts than fossil diesel with potential increases between +30% and +100% in net total CO2 emissions. However as the penetration of renewable energy increases in electricity generation associated E-fuel emissions will decrease: a turning point is around 150 gCO2/kWhel.
No more items...