Policy & Socio-Economics
The European Hydrogen Policy Landscape
Apr 2024
Publication
This report aims to summarise the status of the European hydrogen policies and standards landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing an overview of the European and national policies legislations strategies and codes and standards which impact the deployment of hydrogen technologies and infrastructures. The EHO database covers a total of 29 EU policies and legislations that directly or indirectly affect the development and deployment of hydrogen technologies. To achieve its net zero ambitions the EU started with cross-cutting strategies such as the EU Green Deal and the EU Hydrogen Strategy setting forward roadmaps and targets that are to be achieved in the near future. As a next step the EU has developed legislations such as those bundled in the Fit for 55 package to meet the targets they have put forward. The implemented legislations including funding vehicles and initiatives have an impact on the whole value chain of hydrogen including production transport storage and distribution and end-uses. At national level as of July 2023 63% of the European countries have successfully published their national strategies in the hydrogen sector while 6% of the countries are currently in the draft stage. Several European countries have strategically incorporated quantitative indicators within their national strategies outlining their targets and estimates across the hydrogen value chain. This deliberate approach reflects a commitment to providing clear and measurable goals within their hydrogen strategies. A target often used in the national strategies is on electrolyser capacity as an effort to enhance the domestic renewable hydrogen production. Germany took the lead with an ambitious goal of achieving 10 GW by 2030 followed by France (6.5 GW) and Denmark (4 - 6 GW). Other targets that some of the countries use in their strategies are on the number of hydrogen refuelling stations fuel cell electric vehicles and total (renewable) hydrogen demand. A few countries also have targets on renewable hydrogen uptake in industry and hydrogen injection limit in the transmission grid. To monitor the policies and legislation that are adopted on a national level across the hydrogen value chain a survey was launched with national experts which was validated by Hydrogen Europe. In total 28 European countries have participated to the survey. On production the survey revealed that 61% of country specialists report that their country provides support for capital expenditure (CAPEX) in the development of renewable or low-carbon hydrogen production plants. Moreover 7 countries also provide support for operational expenditure (OPEX). Furthermore 8 countries have instituted official 6 permitting guidelines for hydrogen production projects while 5 countries have enacted a legal act or established an agency serving as a single point of contact for hydrogen project developers. For transmission only two countries reported to provide support schemes for hydrogen injection. Several countries have policies in place that clearly define the hydrogen limit in their transmission grid for now and in the future ranging from 0.02% up to 15% while a few countries define within their policies the operation of hydrogen storage facilities. On end-use the majority of countries totalling 71% reported to have implemented support schemes aimed at promoting the adoption of hydrogen in the mobility sector. Purchase subsidies stand out as the predominant form of support for fuel cell electric vehicles (FCEVs) with implementation observed in 17 countries. In the context of support schemes for stationary fuel applications for heating or power generation only two countries have adopted such measures. A slightly larger group of four countries do provide support for the deployment of residential and commercial heating systems utilizing hydrogen. For hydrogen end-use in industry a total of 9 countries reported to provide support schemes with a major focus on ammonia production (8) and the chemicals industry (7). On the topic of technology manufacturing 7 countries have reported to have support schemes of which grants emerge as the mainly used method (4). Exploring the latest advancements into European codes and standards relevant to the deployment of hydrogen technologies and infrastructures a total of 11 standards have been revised and developed between January 2022 and September 2023. This includes standards covering the following areas: 6 for fuel cell technologies 2 for gas cylinders 2 for road vehicles and 1 for hydrogen refuelling. Moreover 5 standards were published since September 2023 which will be added to the EHO database in its next update. This includes ISO/TS 19870:2023 which sets a methodology for determining the greenhouse gas emissions associated with the production conditioning and transport of hydrogen to consumption gate. This landmark standard which was unveiled at COP28 aims to act as a foundation for harmonization safety interoperability and sustainability across the hydrogen value chain.
2022 Standards Report
Feb 2022
Publication
Purpose: The standards module of the FCHO (https://www.fchobservatory.eu/observatory/Policyand-RCS/Standards) presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized per application enhancing ease of access and findability. The development of sector-relevant standards facilitate and enhance economies of scale interoperability comparability safety and many other issues. Scope: This report presents the developments in European and international standards for the year 2021 and the start of 2022. Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. Key Findings: The development of sector relevant standards on an international level continued to grow in 2022; on a European level many standards are still in the process of being drafted. In 2021 & 2022 11 new standards have been published on the subject of fuel cell technologies and safety and measurement protocols of hydrogen technologies. The recently established committee CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin. In the upcoming years multiple standards will be replaced such as the ISO 12619 1-12 set of standards affecting 40% of all collected standards. Previous Reports: The first report was published in September 2020 followed up by a second report in 2021. This report is the 3 rd Annual report.
2022 EU and National Policies Report
Mar 2022
Publication
Purpose: The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. Scope: This report covers 34 entities and it reflects data collected January 2022 – February 2022. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between member states. Mobility policies for FCEVs are the most common policy types. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
Future Energy Scenarios 2022
Jul 2022
Publication
Future Energy Scenarios (FES) represent a range of different credible ways to decarbonise our energy system as we strive towards the 2050 target.<br/>We’re less than 30 years away from the Net Zero deadline which isn’t long when you consider investment cycles for gas networks electricity transmission lines and domestic heating systems.<br/>FES has an important role to play in stimulating debate and helping to shape the energy system of the future.
Fuel Cells and Hydrogen Observatory Report: Technology and Market
Mar 2022
Publication
The information in this report covers the period January 2021 – December 2021. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this edition data to the end of 2021 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: Application: Total system shipments are divided into Transport Stationary and Portable applications Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies. This year the report also includes data relating to electrolysers commissioned within Europe. Information is presented on the number of hydrogen refuelling stations (HRS) deployed since 2014 with detailed information on HRS in operation including pressure capacity etc. In parallel the observatory provides data on the registered fuel cell electric vehicles (FCEVs) on European roads providing an indication of the speed of adoption of hydrogen in the transport sector. This annual report is an enrichment analysis of the data available on the FCHO providing global context and insights on trends observed year-over-year. Electrolyser systems commissioned for each calendar year within Europe are presented as both the number of units and the total system power rating in megawatts (MW). The data is further divided by: Number of Electrolyser Units Commissioned: The number of units brought online each year in Europe from 2000 until 2021. Application: Total systems commissioned are divided in Transport Fuel Industry Feedstock Steel Making Industrial Heat Power Generation Export Grid Injection and Sector Coupling. Electrolyser Type: Number for each of the different electrolyser types commissioned are provided. Region of deployment: Region where the electrolyser was commissioned. All sections in the Technology & Market module are updated following an annual data collection and validation cycle and the annual report is published the following Spring.
Analysis of the European Strategy for Hydrogen: A Comprehensive Review
May 2023
Publication
This review focuses on analysing the strategy and aspirations of the European Union within the hydrogen sector. This aim is achieved through the examination of the European Parliament’s hydrogen strategy allowing for a study of actions and projects in hydrogen technologies. The Parliament’s hydrogen strategy is the document that provides the guideline of how the EU intends to function in the hydrogen sector and manages to cover a wide range of topics all of them significant to represent the entirety of the hydrogen sector. It touches on subjects such as hydrogen demand infrastructure research and standards among others. The review discusses also the aspect that the EU intends to be a leader in the hydrogen sector including the large-scale industrialization of key elements such as electrolysers and this purpose is corroborated by the large number of associations strategies plans and projects that are being established and developed by the European Union. The most important conclusions to learn from this analysis are that hydrogen has many of the right characteristics to make it the key to decarbonisation especially in hard-to-abate sectors and that it is bound to be one of the main actors in the imminent green transition. Moreover hydrogen seems to be having its breakthrough and this field’s development can have benefits not only from an environmental perspective but also from an economical one enabling the way into the green transition and the fight against climate change.
The European Hydrogen Market Landscape
Nov 2023
Publication
This report aims to summarise the status of the European hydrogen market landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing a full overview of the hydrogen market and the deployment of clean hydrogen technologies. As of the end of 2022 a total of 476 operational hydrogen production facilities across Europe boasting a cumulative hydrogen production capacity of approximately 11.30 Mt were identified. Notably the largest share of this capacity is contributed by key European countries including Germany the Netherlands Poland Italy and France which collectively account for 56% of the total hydrogen capacity. The hydrogen consumption in Europe has been estimated at approximately 8.23 Mt reflecting an average capacity utilisation rate of 73%. It's worth highlighting that conventional hydrogen production methods encompassing reforming by-product production from ethylene and styrene and by-product electrolysis collectively yield 11.28 Mt of hydrogen capacity. These conventional processes are distributed across 376 production facilities constituting 99.9% of the total production capacity in 2022. Throughout the year 2022 there were no newly commissioned hydrogen production facilities that integrated carbon capture technology into their operations. Additionally a notable presence of water electrolysis-based hydrogen production projects in Europe was identified. There was a total of 97 water electrolysis projects with 67 of them having a minimum capacity of 0.5 MW resulting in a cumulative production capacity of 174.28 MW. Furthermore 46 such projects were found to be under construction and are anticipated to contribute an additional 1199.07 MW of water electrolysis capacity upon becoming operational with the estimated timeframe ranging from January 2023 to 2025. A significant 87% of the total hydrogen production capacity in Europe is dedicated to onsite captive consumption indicating that it is primarily produced and used within the facility. The remaining 13% of capacity is specifically allocated for external distribution and sale characterizing what's known as merchant consumption. Despite the prevailing dominance of captive hydrogen production within Europe it's noteworthy that thousands of metric tonnes of hydrogen are already being traded and distributed across the continent. These transfers often occur through dedicated hydrogen pipelines or transportation via trucks. In 2022 an example of this growing trend was the hydrogen export from Belgium to the Netherlands which emerged as the single most significant hydrogen flow between European countries constituting a substantial 75% of all hydrogen traded in Europe. Belgium earned distinction as Europe's leading hydrogen exporter with 78% of the hydrogen that flowed between European countries originating 6 from its facilities. Conversely the Netherlands played a pivotal role as Europe's primary hydrogen importer accounting for an impressive 76% of the hydrogen imported into the continent. The rise of the clean hydrogen market in Europe coupled with the European Union's ambition to import 10 Mt of renewable hydrogen from non-EU sources by 2030 is expected to drive an increase in hydrogen flows both exports and imports among European countries. In 2022 the total demand for hydrogen in Europe was estimated to be 8.19 Mt. The biggest share of hydrogen demand comes from refineries which were responsible for 57% of total hydrogen use (4.6 Mt) followed by the ammonia industry with 24% (2.0 Mt). Together these two sectors consumed 81% of the total hydrogen consumption in Europe. Clean hydrogen demand while currently making up less than 0.1% of the overall hydrogen demand is notably driven by the mobility sector. Forecasts project an impressive growth trajectory in total hydrogen demand for Europe over the coming decades. Projections show a remarkable 127% surge from 2030 to 2040 followed by a substantial 63% increase from 2040 to 2050. Considering the current hydrogen demand there is a projected 51% increase until 2030. Throughout the three decades under examination the industrial sector is anticipated to maintain its predominant position consistently demonstrating the highest demand for hydrogen. However this conclusion refers to average values and variations that may exist. The total number of Hydrogen Fuel Cell Electric Vehicles (FCEV) registrations in Europe in 2022 was estimated at 1537 units. In comparison to the previous year the number of registrations increased by 31%. This surge in registrations has had a pronounced impact on the overall FCEV fleet's evolution in Europe which increased from 4050 units to 5570 (+38%). Notably passenger cars dominated the landscape constituting 86% of the total FCEV fleet. Exploring the latest advancements in hydrogen infrastructure across Europe in 2022 the hydrogen distribution network comprised spanning a total length of 1569 km. Within Europe the largest networks are situated in Belgium and Germany at 600 km and 400 km respectively. Of particular importance is the cross-border network of France Belgium and the Netherlands spanning a total of 964 km. To keep pace with the rising number of Fuel Cell Electric Vehicles (FCEVs) on European roads and promote their wider integration it is key to ensure sufficient accessibility to refuelling infrastructure. Consequently many countries are endorsing the establishment of hydrogen refuelling stations (HRS) so that they are publicly accessible on a nationwide scale. More recharging and refuelling stations for alternative fuels will be deployed in the coming years across Europe enabling the transport sector to significantly reduce its carbon footprint following the adoption of the alternative fuel infrastructure regulation (AFIR). Part of the regulation's main target is that hydrogen refuelling stations serving both cars and lorries must be deployed from 7 2030 onwards in all urban nodes and every 200 km along the TEN-T core network. Since 2015 the total number of operational and publicly accessible HRS in Europe has grown at an accelerated pace from 38 to 178 by the summer of 2023. Germany takes the lead having the largest share at approximately 54% of the total number of HRS with 96 stations currently operational. The majority of the HRS (89%) are equipped with 700 bar car dispensers. In 2022 the levelized production costs of hydrogen generated through Steam Methane Reforming (SMR) in Europe averaged approximately 6.23 €/kg H2. When incorporating a carbon capture system the average cost of hydrogen production via SMR in Europe increased to 6.38 €/kg H2. Additionally the production costs of hydrogen in Europe for 2022 utilizing grid electricity averaged 9.85 €/kg H2. Hydrogen production costs through electrolysis with a direct connection to a renewable energy source had an average estimated cost of 6.86 €/kg. As of May 2023 Europe's operational water electrolyser manufacturing capacity stands at 3.11 GW/year with an additional 2.64 GW planned by the end of 2023. Alkaline technologies make up 53% of the total capacity. Looking ahead to 2025 ongoing projects are expected to raise the total capacity to 7.65 GW/year. Fuel cell deployment in Europe has showed an increasing trend over the past decade. The total number of shipped fuel cells were forecasted on around 11200 units in 2021 and a total capacity of 190 MW. The most significant increase in capacity occurred between 2018 and the forecast of 2021 (+148.8 MW).
Investment Estimation in the Energy and Power Sector towards Carbon Neutrality Target: A Case Study of China
Mar 2023
Publication
The transition towards low-carbon energy and power has been extensively studied by research institutions and scholars. However the investment demand during the transition process has received insufficient attention. To address this gap an energy investment estimation method is proposed in this paper which takes the unit construction costs and potential development of major technology in the energy and power sector as input. The proposed estimation method can comprehensively assess the investment demand for various energy sources in different years including coal oil natural gas biomass power and hydrogen energy. Specifically we applied this method to estimate the investment demand of China’s energy and power sector from 2020 to 2060 at five year intervals. The results indicate that China’s cumulative energy investment demand over this period is approximately 127 trillion CNY with the power sector accounting for the largest proportion at 92.35% or approximately 117 trillion CNY. The calculated cumulative investment demand is consistent with the findings of several influential research institutions providing validation for the proposed method.
2021 Hydrogen Supply and Demand
Sep 2021
Publication
Purpose: The purpose of the hydrogen supply and demand data stream is to track changes in the structure of hydrogen supply capacity and demand in Europe. This report is mainly focused on presenting the current landscape that will allow for future year-on-year comparisons to assess the progress Europe is making with regards to deployment of clean hydrogen production capacity as well as development of demand for clean hydrogen from emerging new hydrogen applications in industry or mobility sectors. Scope: The following report contains data about hydrogen production capacity and consumption in EU countries together with Switzerland Norway Iceland and the United Kingdom. Hydrogen production capacity is presented by country and by production technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data reflecting end of 2019. Key Findings: The current hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half of hydrogen consumption. Hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are currently insignificant with hydrogen produced from natural gas coupled with carbon capture at 0.5% and hydrogen produced from water electrolysis at 0.14% of total production capacity.
Future Energy Scenarios 2021
Jul 2022
Publication
Our Future Energy Scenarios (FES) draw on hundreds of experts’ views to model four credible energy pathways for Britain over coming decades. Matthew Wright our head of strategy and regulation outlines what the 2021 outlook means for consumers society and the energy system itself.<br/>This year’s Future Energy Scenarios insight reveals a glimpse of a Britain that is powered with net zero carbon emissions.<br/>Our analysis shows that our country can achieve its legally-binding carbon reduction targets: in three out of four scenarios in the analysis the country reaches net zero carbon emissions by 2050 with Leading the Way – our most ambitious scenario – achieving it in 2047 and becoming net negative by 2050.
The UK Hydrogen Innovation Opportunity: UK Capabilities
Apr 2024
Publication
The UK is not ‘starting from zero’. We have an accelerating base of hydrogen technology supply chain companies a world-class scientific base and an array of demonstration projects.
The need is to prioritise and coordinate investment to build and scale hydrogen supply chains serving multiple markets domestically and internationally. This report provides an overview of UK capability in hydrogen technologies. It has been produced as a supporting report to The UK Hydrogen Innovation Opportunity.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
The need is to prioritise and coordinate investment to build and scale hydrogen supply chains serving multiple markets domestically and internationally. This report provides an overview of UK capability in hydrogen technologies. It has been produced as a supporting report to The UK Hydrogen Innovation Opportunity.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
Energy Transition Strategies in the Gulf Cooperation Council Countries
Sep 2024
Publication
During the last two decades Gulf Cooperation Council (GCC) countries have seen their population economies and energy production growing steeply with a substantial increase in Gross Domestic Product. As a result of this growth GCC consumption-based carbon dioxide (CO2) emissions increased from 540.79 Metric tons of CO2 equivalent (MtCO2) in 2003 to 1090.93 MtCO2 in 2020. The assumptions and strategies that have driven energy production in the past are now being recast to achieve a more sustainable economic development. The aim of this study is to review and analyze ongoing energy transition strategies that characterize this change to identify challenges and opportunities for bolstering the effectiveness of current strategic orientations. The ensuing analysis shows that since COP26 GCC countries have been pursuing a transition away from carbon-based energy policies largely characterized by the adoption of solar PV with other emerging technologies including energy storage carbon capture and hydrogen generation and storage. While as of 2022 renewable energy adoption in the GCC only represented 0.15 % of global installed capacity GCC countries are making strong efforts to achieve their declared 2030 energy targets that average about 26 % with peaks of 50 % in Saudi Arabia and 30 % in the UAE and Oman. With reference to solar energy plans are afoot to add 42.1 GW of solar photovoltaics and concentrated solar power which will increase 8-fold the current installed renewable capacity (5.1 GW). At the same time oil and gas production rates remain stable and fossil fuel subsidies have grown in the last few years. Also there is a marked preference for the deployment of CCUS and utility-scale solar energy technology vs. distributed solar energy energy efficiency and nature-based solutions. The pursuit of energy transition in the GCC will require increased efforts in the latter and other overlooked strategic endeavors to achieve a more balanced portfolio of sustainable energy solutions with stronger emphasis on energy efficiency (as long as rebound effects are mitigated) and nature-based solutions. Increased efforts are also needed in promoting governance practices aimed to institutionalize regulatory frameworks incentives and cooperation activities that promote the reduction of fossil fuel subsidies and the transition away from fossil fuels.
Is Green Hydrogen an Environmentally and Socially Sound Solution for Decarbonizing Energy Systems Within a Circular Economy Transition?
May 2025
Publication
Green hydrogen (GH2) is expected to play an important role in future energy systems in their fight against climate change. This study after briefly recalling how GH2 is produced and the main steps throughout its life cycle analyses its current development environmental and social impacts and a series of case studies from selected literature showing its main applications as fuel in transportation and electricity sectors as a heat producer in high energy intensive industries and residential and commercial buildings and as an industrial feedstock for the production of other chemical products. The results show that the use of GH2 in the three main areas of application has the potential of contributing to the decarbonization goals although its generation of non-negligible impacts in other environmental categories requires attention. However the integration of circular economy (CE) principles is important for the mitigation of these impacts. In social terms the complexity of the value chain of GH2 generates social impacts well beyond countries where GH2 is produced and used. This aspect makes the GH2 value chain complex and difficult to trace somewhat undermining its renewability claims as well as its expected localness that the CE model is centred around.
Lower-Carbon Substitutes for Natural Gas for Use in Energy-Intensive Industries: Current Status and Techno-Economic Assessment in Lithuania
May 2025
Publication
Significant shortfalls in meeting the climate mitigation targets and volatile energy markets make evident the need for an urgent transition from fossil fuels to sustainable alternatives. However the integration of zero-carbon fuels like green hydrogen and ammonia is an immense project and will take time and the construction of new infrastructure. It is during this transitional period that lower-carbon natural gas alternatives are essential. In this study the industrial sectors of Lithuania are analysed based on their energy consumption. The industrial sectors that are the most energy-intensive are food chemical and wood-product manufacturing. Synthetic natural gas (SNG) has become a viable substitute and biomethane has also become viable given a feedstock price of 21 EUR/MWh in the twelfth year of operation and 24 EUR/MWh in the eighth year assuming an electricity price of 140 EUR/MWh and a natural gas price of 50 EUR/MWh. Nevertheless the scale of investment in hydrogen production is comparable to the scale of investment in the production of other chemical elements; however hydrogen production is constrained by its high electricity demand—about 3.8 to 4.4 kWh/Nm3—which makes it economically viable only at negative electricity prices. This analysis shows the techno-economic viability of biomethane and the SNG as transition pathways towards a low-carbon energy future.
Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO2
Mar 2025
Publication
The successful commercialisation of underground hydrogen storage (UHS) is contingent upon technological readiness and social acceptance. A lack of social acceptance inadequate policies/regulations an unreliable business case and environmental uncertainty have the potential to delay or prevent UHS commercialisation even in cases where it is ready. The technologies utilised for underground hydrogen and carbon dioxide storage are analogous. The differences lie in the types of gases stored and the purpose of their storage. It is anticipated that the challenges related to public acceptance will be analogous in both cases. An assessment was made of the possibility of transferring experiences related to the social acceptance of CO2 sequestration to UHS based on an analysis of relevant articles from indexed journals. The analysis enabled the identification of elements that can be used and incorporated into the social acceptance of UHS. A framework was identified that supports the assessment and implementation of factors determining social acceptance ranging from conception to demonstration to implementation. These factors include education communication stakeholder involvement risk assessment policy and regulation public trust benefits research and demonstration programmes and social embedding. Implementing these measures has the potential to increase acceptance and facilitate faster implementation of this technology.
A Multi-State Rotational Control Strategy for Hydrogen Production Systems Based on Hybrid Electrolyzers
Apr 2025
Publication
Harnessing surplus wind and solar energy for water electrolysis boosts the efficiency of renewable energy utilization and supports the development of a low-carbon energy framework. However the intermittent and unpredictable nature of wind and solar power generation poses significant challenges to the dynamic stability and hydrogen production efficiency of electrolyzers. This study introduces a multi-state rotational control strategy for a hybrid electrolyzer system designed to produce hydrogen. Through a detailed examination of the interplay between electrolyzer power and efficiency—along with operational factors such as load range and startup/shutdown times—six distinct operational states are categorized under three modes. Taking into account the differing dynamic response characteristics of proton exchange membrane electrolyzers (PEMEL) and alkaline electrolyzers (AEL) a power-matching mechanism is developed to optimize the performance of these two electrolyzer types under varied and complex conditions. This mechanism facilitates coordinated scheduling and seamless transitions between operational states within the hybrid system. Simulation results demonstrate that compared to the traditional sequential startup and shutdown approach the proposed strategy increases hydrogen production by 10.73% for the same input power. Moreover it reduces the standard deviation and coefficient of variation in operating duration under rated conditions by 27.71 min and 47.04 respectively thereby enhancing both hydrogen production efficiency and the dynamic operational stability of the electrolyzer cluster.
Green Tides: The Suez Canal as Key Hub and Green Corridor for a Hydrogen Future Between the Middle East and Europe
Feb 2025
Publication
The shipping industry faces the dual challenge of reducing emissions to meet net-zero targets by 2050 and transporting green energy sources like hydrogen and its derivatives. Green shipping corridors provide experimental routes for lowcarbon solutions with the Suez Canal uniquely positioned to lead. This paper examines the canal’s evolving role as a dynamic energy space where diverse actors and networks intersect shaping spatial power relations and aligning with green capitalism interests. It explores the Suez Canal’s potential to serve as a model for hydrogen initiatives and its capacity to influence global energy governance and geopolitical dynamics in the transition to a sustainable shipping future. The canal also represents a microcosm of broader global shifts toward a future hydrogen economy where numerous stakeholders vie for power and influence.
Potential Financing Mechanisms for Green Hydrogen Development in Sub-Saharan Africa
Aug 2025
Publication
Green hydrogen is gaining global attention as a zero-carbon energy carrier with the potential to drive sustainable energy transitions particularly in regions facing rising fossil fuel costs and resource depletion. In sub-Saharan Africa financing mechanisms and structured off-take agreements are critical to attracting investment across the green hydrogen value chain from advisory and pilot stages to full-scale deployment. While substantial funding is required to support a green economic transition success will depend on the effective mobilization of capital through smart public policies and innovative financial instruments. This review evaluates financing mechanisms relevant to sub-Saharan Africa including green bonds public–private partnerships foreign direct investment venture capital grants and loans multilateral and bilateral funding and government subsidies. Despite their potential current capital flows remain insufficient and must be significantly scaled up to meet green energy transition targets. This study employs a mixed-methods approach drawing on primary data from utility firms under the H2Atlas-Africa project and secondary data from international organizations and the peer-reviewed literature. The analysis identifies that transitioning toward Net-Zero emissions economies through hydrogen development in sub-Saharan Africa presents both significant opportunities and measurable risks. Specifically the results indicate an estimated investment risk factor of 35% reflecting potential challenges such as financing infrastructure and policy readiness. Nevertheless the findings underscore that green hydrogen is a viable alternative to fossil fuels in subSaharan Africa particularly if supported by targeted financing strategies and robust policy frameworks. This study offers practical insights for policymakers financial institutions and development partners seeking to structure bankable projects and accelerate green hydrogen adoption across the region.
Green Hydrogen in the European Union - A Large-scale Assessment of the Supply Potential and Economic Viability
Aug 2025
Publication
Demand for hydrogen is expected to increase in the coming years to defossilize hard-to-abate sectors. In the European Union the question remains in which quantities and at what cost hydrogen can be produced to satisfy the growing demand. This paper applies different approaches to model costs and potentials of off-grid hydrogen production within the European Union. The modeled approaches distinguish the effects of different spatial and technological resolutions on hydrogen production potentials costs and prices. According to the results the hydrogen potential within the European Union is above 6800 TWh. This figure far surpasses the expected demand range of 1423 to 1707 TWh in 2050. The cost of satisfying the demand exceeds 100 billion euro at marginal costs of hydrogen below 85 euro per megawatt-hour. Additionally the results show that an integrated European Union market would reduce the overall system costs notably compared to a setup in which each country covers its own hydrogen demand domestically. Just a few countries would be able to supply the entire European Union’s hydrogen demand in the case of an integrated market. This finding leads to the conclusion that an international hydrogen infrastructure seems advantageous.
Analysis of Hydrogen Network Tariffs in Relation to an Initially Reduced and Delayed Expansion of the German Hydrogen Network
Jun 2025
Publication
This study examines the economic and regulatory implications of the development of Germany’s hydrogen core network. Using a mathematical-economic model of the amortization account and a reproduction of the network topology based on the German transmission system operators’ draft proposals the analysis evaluates the impact of delaying the network expansion with completion postponed from 2032 to 2037. The proposed phased approach prioritizes geographically clustered regions and ensures sufficient demand alignment during each expansion stage. The results demonstrate that strategic adjustments to the network size and timing significantly enhance cost-efficiency. In the initially reduced and delayed scenario uncapped network tariffs remain below €15/ kWh/h/a suggesting that under specific conditions the amortization account may become redundant while maintaining supply security and supporting the market ramp-up of hydrogen. These findings highlight the potential for demand-driven phased hydrogen infrastructure development to reduce financial burdens and foster a sustainable transition to a hydrogen-based energy system.
No more items...