Policy & Socio-Economics
Hydrogen Production via Direct Seawater Electrolyisis, Literature Review
Jan 2025
Publication
Seawater electrolysis is a promising approach for sustainable hydrogen production that could alleviate the ever-growing demand for freshwater resources. This literature review synthesizes current research on direct seawater electrolysis drawing attention to advances in electrode materials catalyst efficiency and system design. Furthermore an overview of indirect seawater electrolysis is given as a benchmark. Key challenges including electrode corrosion chlorine evolution and energy efficiency are critically analysed. Recent innovations in selective catalysts and membrane technologies are discussed as potential solutions for such challenges. The review also evaluates the economic feasibility of direct seawater electrolysis compared with the established traditional electrolysis using desalinated water. There is currently no research or industrial project demonstrating clear benefits of using direct seawater electrolysis over indirect seawater electrolysis. Our findings however do suggest that direct seawater electrolysis can become a viable component of the hydrogen economy for specific target applications.
The Role of Hydrogen in Integrated Assessment Models: A Review of Recent Developments
Mar 2025
Publication
Hydrogen is emerging as a crucial energy source in the global effort to reduce dependence on fossil fuels and meet climate goals. Integrating hydrogen into Integrated Assessment Models (IAMs) is essential for understanding its potential and guiding policy decisions. These models simulate various energy scenarios assess hydrogen’s impact on emissions and evaluate its economic viability. However uncertainties surrounding hydrogen technologies must be effectively addressed in their modeling. This review examines how different IAMs incorporate hydrogen technologies and their implications for decarbonization strategies and policy development considering underlying uncertainties. We begin by analyzing the configuration of the hydrogen supply chain focusing on production logistics distribution and utilization. The modeling characteristics of hydrogen integration in 12 IAM families are explored emphasizing hydrogen’s growing significance in stringent climate mitigation scenarios. Results from the literature and the AR6 database reveal gaps in the modeling of the hydrogen supply chain particularly in storage transportation and distribution. Model characteristics are critical in determining hydrogen’s share within the energy portfolio. Additionally this study underscores the importance of addressing both parametric and structural uncertainties in IAMs which are often underestimated leading to varied outcomes regarding hydrogen’s role in decarbonization strategies.
Unlocking Sweden's Hydrogen Export Potential: A Techno-Economic Analysis of Compressed Hydrogen and Chemical Carriers
Jun 2025
Publication
Sweden with its abundant access to low-cost fossil-free electricity is well-positioned to become a significant hydrogen exporter. This study presents a techno-economic analysis of different hydrogen carriers—compressed hydrogen methanol ammonia and liquid organic hydrogen carriers (LOHC)—for export applications. Using the Northern Green Crane Project as a reference for scale the analysis focuses on cost optimization for hydrogen production storage and transportation. A linear programming model is developed to optimize capacities and operational strategies for each carrier ensuring a fair basis for comparison. Results indicate that LOHC and ammonia are competitive with compressed hydrogen showing particular promise for larger-scale long-distance deliveries. These findings offer valuable insights for policymakers and industry stakeholders developing Sweden’s hydrogen export strategies.
Streamlining and Improving Some Aspects of the Governance of the Energy Sector
Sep 2025
Publication
The governance of the EU energy sector has gradually evolved over time to reflect and support the closer integration of the Internal Electricity Market. As the EU energy sector faces new challenges both at the local and cross-border levels its governance might once again need to be reviewed to ensure that it remains fit for the future. This Policy Brief highlights three opportunities for streamlining the governance of the electricity (and gas) sector(s) at the cross-border level related to: (i) the ‘all TSOs’ or ‘all relevant TSOs’ processes; (ii) the regulatory oversight of EU-wide entities; and (iii) the operation of the electricity market coupling. Other areas for improvement in the current governance framework may also emerge and one suggestion relates to the dual role of the ENTSOs both as (i) entities responsible for a number of essential tasks for the energy sector and (ii) associations with TSOs as their members.
The Impact of Temporal Hydrogen Regulation on Hydrogen Exporters and their Domestic Energy Transition
Aug 2025
Publication
As global demand for green hydrogen rises potential hydrogen exporters move into the spotlight. While exports can bring countries revenue large-scale on-grid hydrogen electrolysis for export can profoundly impact domestic energy prices and energy-related emissions. Our investigation explores the interplay of hydrogen exports domestic energy transition and temporal hydrogen regulation employing a sector-coupled energy model in Morocco. We find substantial co-benefits of domestic carbon dioxide mitigation and hydrogen exports whereby exports can reduce market-based costs for domestic electricity consumers while mitigation reduces costs for hydrogen exporters. However increasing hydrogen exports in a fossil-dominated system can substantially raise market-based costs for domestic electricity consumers but surprisingly temporal matching of hydrogen production can lower these costs by up to 31% with minimal impact on exporters. Here we show that this policy instrument can steer the welfare (re-)distribution between hydrogen exporting firms hydrogen importers and domestic electricity consumers and hereby increases acceptance among actors.
Assistance in the Development of an Auction Design and Necessary Pre-conditions for a European Import Auction for Renewable Hydrogen under the European Hydrogen Bank: Final Report
Aug 2025
Publication
This report supports the European Commission (DG ENER) in the design and implementation of a European import auction for renewable hydrogen and its derivatives under the European Hydrogen Bank (EHB). The EHB aims to contribute to the EU's climate neutrality goal by 2050. While domestic auctions have already been launched under the EHB its international leg focusing on renewable fuels of non-biological origin (RFNBO) imports from third countries remains to be designed. This report offers strategic recommendations based on hydrogen market analyses the assessment of existing and planned hydrogen auction schemes in Europe and beyond as well as preliminary considerations on auction design. The analysis highlights the potential for hydrogen imports from regions like North America Australia Latin America and the MENA region. It includes concrete case studies on both pipeline-based imports of pure hydrogen and ship-based imports of key derivatives (ammonia methanol and synthetic aviation fuels (eSAF) to reflect Member State preferences and provides a concrete starting point for further defining import auctions. Priority considerations for auction design include ensuring fair competition between domestic production and imports addressing geopolitical risks and achieving cost efficiency. The case studies serve as a flexible blueprint for implementing EHB import auctions considering Member State interests and aligning with the EU's broader objectives.
Hydrogen UK - Driving Demand
Jul 2025
Publication
Low carbon hydrogen has a fundamental role to play in not one but two of the UK Government’s core missions. First it can help grow the economy - with thousands of new jobs and opportunities breathing new life into our industrial heartlands. Second it can help the UK become a clean energy superpower by using clean secure energy that we control. Third it can future-proof the UK’s foundational industries delivering decarbonisation and energy security to the hard-to-abate sectors which underpin the UK economy. Hydrogen developers across our membership report growing interest from customers in a wide range of sectors. Whilst current government policy has helped start the hydrogen economy industry wants this to accelerate and become more holistic so that interest is translated into demand allowing the sector to fully develop and the UK to meet its decarbonisation targets. With growing international competition the UK Government should prioritise the growth of hydrogen technology implementation leveraging the nation’s natural geological and geographical advantages. Although £20 billion in private capital investment is estimated to be ready to support the UK Government’s hydrogen ambitions persistent delays and market uncertainty risk this funding being lost to other markets. This report outlines the importance of Driving Demand for offtakers complementing the strong market foundation built from Government’s early hydrogen production focus. For effective policy implementation industry stakeholders have highlighted the importance of finding balance: retaining low-carbon technology optionality alongside certainty and support for investment with the adoption of a clear ‘vision’ and ‘market creation’ supported by a tailored mix of ‘carrots and sticks’ to support the market. From the research conducted by HUK it is clear that the choice of decarbonisation options is not done on a sector-by-sector basis that even within companies the decision-making process is site-by-site. This reflects the sensitivity of numerous factors that will ultimately determine the best solution for their site and re-enforces the view that customers must be allowed the choice of decarbonisation options. Hydrogen will play a significant role in decarbonising some of the hardest to abate sectors of the UK economy complimenting the role of electrification CCUS and other decarbonisation technologies. These sectors represent the hardest and therefore most expensive to decarbonise. However hydrogen also provides an opportunity to deliver significant economic growth through a thriving domestic supply chain and so a holistic approach should be applied.
The paper can be found on their website.
The paper can be found on their website.
The Lack of Systems Thinking and Interdisciplinarity is Killing the Hydrogen Economy
Sep 2025
Publication
Hydrogen’s promise as a transformative energy solution has been consistently unfulfilled. This perspective article suggests that the primary barrier is not necessarily technological but a systemic failure to apply holistic systems thinking and genuine interdisciplinary collaboration. Through historical analysis and contemporary case studies we argue that only by integrating technical economic policy and social expertise within a holistic systems framework across the entire value chain can hydrogen overcome its boom-and-bust cycles and become a foundational component of the low-carbon energy future.
GB Energy Networks: Experts' Views on Future Pathways and Multi-vector Energy Networks Approach
Jul 2025
Publication
The decarbonization of energy systems poses significant challenges to energy networks due to the introduction of new energy vectors and changes in the pattern of energy demand. However this is currently an under-researched area. This paper addresses a gap in the literature by drawing on the socio-technological transitions and multi-system interactions literature to explore the views of experts from industry academia and other sectors about the challenges facing UK energy networks and the possible solutions including taking a more wholistic approach to the planning and operation of dierent networks. Using these frameworks we have demonstrated that systems can be deliberately integrated to interact and solve particular system challenges and have identified the nature of these interactions. The empirical results identify areas of consensus and disagreement about the future development of network infrastructure and regulation. They also highlight how government policy responds to the challenges and opportunities presented by the UK climate targets. The findings show widespread agreement that the UK energy system will become more electrified and decentralized as it incorporates more renewable energy. However the role of gaseous fuels in the energy system is more uncertain with some experts seeing a move from natural gas to hydrogen as being key to maintaining the security of supply while others see little or no role for hydrogen. There is also widespread agreement that the regulatory structure should change to address the challenges facing energy networks with much less agreement on whether this could happen quickly enough. Recent developments indicate the UK Government recognizes the need for regulatory change but it is premature to foresee their success in helping networks be a driver of rather than a barrier to a net-zero energy system.
Facilitating India’s Deep Decarbonisation Through Sector Coupling of Electricity with Green Hydrogen and Ammonia
Mar 2025
Publication
Green hydrogen and ammonia are forecast to play key roles in the deep decarbonization of the global economy. Here we explore the potential of using green hydrogen and ammonia to couple the energy agriculture and industrial sectors with India’s nationalscale electricity grid. India is an ideal test case as it currently has one of the most ambitious hydrogen programs in the world with projected electricity demands for hydrogen and ammonia production accounting for over 1500 TWh/yr or nearly 25% of India’s total electricity demand by 2050. We model the ambitious deep decarbonization of India’s electricity grid and half of its steel and fertilizer industries by 2050. We uncover modest risks for India from such a strategy with many benefits and opportunities. Our analysis suggests that a renewables-based energy system coupled with ammonia off-take sectors has the potential to dramatically reduce India’s greenhouse emissions reduce requirements for expensive long-duration energy storage or firm generating capacity reduce the curtailment of renewable energy provide valuable short-duration and long-duration load-shifting and system resilience to inter-annual weather variations and replace tens of billions of USD in ammonia and fuel imports each year. All this while potentially powering new multi-billion USD green steel and maritime fuel export industries. The key risk for India in relation to such a strategy lies in the potential for higher costs and reduced benefits if the rest of the world does not match their ambitious investment in renewables electrolyzers and clean storage technologies. We show that such a pessimistic outcome could result in the costs of green hydrogen and ammonia staying high for India through 2050 although still within the range of their gray counterparts. If on the other hand renewable and storage costs continue to decline further with continued global deployment all the above benefits could be achieved with a reduced levelized cost of hydrogen and ammonia (10–25%) potentially with a modest reduction in total energy system costs (5%). Such an outcome would have profound global implications given India’s central role in the future global energy economy establishing India’s global leadership in green shipping fuel agriculture and steel while creating an affordable sustainable and secure domestic energy supply.
The Role of Power-to-X and Domestic eFuel Production for Energy Transition and Energy Independence in Europe
Jan 2025
Publication
The ongoing global energy transition spurred by ecological concerns and by evolving political dynamics is necessitating a significant expansion of renewable energy sources. This shift towards renewables is introducing the challenge of heightened energy supply volatility and it underscores the imperative for large-scale storage solutions in order to mitigate fluctuations in demand and supply. This study investigates the potential of Power-to-X (P2X) technologies to address this challenge and it evaluates their technical and socioeconomic implications. Using scenario simulations that leverage the maximum estimated potentials of renewable energy sources relative to demand profiles across different countries we explore the role of P2X integration in the enhancement of energy production. Our analysis highlights the pivotal role of hydrogen in the decarbonization of key industrial sectors such as steel production and heavyduty transportation in the near term. For Germany we observe a reduction in CO2 emissions from 306.26 Mt to 232.28 Mt (-24.15%) and an increase in energy independence as measured by the reduction in primary energy imports from 1150.37 TWh to 887.86 TWh (-22.82%) when comparing the baseline scenario to the most socio-economically favorable scenario. France demonstrates even greater reductions with CO2 emissions decreasing by 37.69% and primary energy imports by 40.46%. Portugal achieves similar reductions with CO2 emissions falling by 38.71% and primary energy imports by 41.81%. However none of the three countries investigated in this study (Germany France and Portugal) achieve full decarbonization and energy independence simultaneously since their respective potential for renewable energy is not sufficiently large. Drawing from these insights and accounting for the unique contexts of each of the three countries we offer tailored policy recommendations for optimizing P2X utilization and enhancing energy production efficiency.
Ensuring Southern Spain’s Energy Future: A LEAP-Based Scenario for Meeting 2030 and 2050 Goals
Aug 2025
Publication
The transition towards a low-carbon energy system remains a critical challenge for regions heavily dependent on fossil fuels such as Andalusia. This study proposes an energy planning framework based on the Low Emissions Analysis Platform (LEAP) to model alternative scenarios and assess the feasibility of meeting the 2030 and 2050 decarbonisation targets. Three scenarios are evaluated the Tendential Scenario (TS01) the Efficient Scenario (ES01) and the Efficient UJA (EEUJA) Scenario with this last being specifically designed to ensure full compliance with regional energy goals. The results indicate that while the Tendential Scenario falls short in reducing primary energy consumption and greenhouse gas (GHG) emissions the Efficient Scenario achieves significant progress though it is still insufficient to meet renewable energy integration targets. The proposed EEUJA Scenario introduces more ambitious measures including large-scale electrification smart grids energy storage and green hydrogen deployment resulting in a 39.5% reduction in primary energy demand by 2030 and 97% renewable energy penetration by 2050. Furthermore by implementing sector-specific decarbonisation strategies for the industry transport residential and services sectors Andalusia could position itself as a frontrunner in the energy transition while minimising economic and environmental risks. These findings underscore the importance of policy enforcement technological innovation and financial incentives in securing a sustainable energy future. The methodology developed in this study is replicable for other regions aiming for carbon neutrality and energy resilience through strategic planning and scenario analysis.
Socio-Economic Impact Assessment of Hydrogen Injection in the Natural Gas Network
Feb 2025
Publication
This study explores the feasibility parameters of a potential investment plan for injecting “green” hydrogen into the existing natural gas supply network in Greece. To this end a preliminary profitability optimization analysis was conducted through key performance indicators such as the cost of hydrogen and the socio-environmental benefit of carbon savings followed by break-even and sensitivity analyses. The identification of the major impact drivers of the assessment was based on the examination of a set of operational scenarios of varying hydrogen and natural gas flow rates. The results show that high natural gas capacities with a 5% hydrogen content by volume are the optimal case in terms of socio-economic viability but the overall profitability is too sensitive to hydrogen pricing rendering it unfeasible without additional motives measures and pricing strategies. The results feed into the main challenge of implementing commercial “green” hydrogen infrastructures in the market in a sustainable and feasible manner.
Simulation and Feasibility Assessment of a Green Hydrogen Supply Chain: A Case Study in Oman
Feb 2024
Publication
The transition to sustainable energy is crucial for mitigating climate change impacts. This study addresses this imperative by simulating a green hydrogen supply chain tailored for residential cooking in Oman. The supply chain encompasses solar energy production underground storage pipeline transportation and residential application aiming to curtail greenhouse gas emissions and reduce the levelized cost of hydrogen (LCOH). The simulation results suggest leveraging a robust 7 GW solar plant. Oman achieves an impressive annual production of 9.78 TWh of green hydrogen equivalent to 147808 tonnes of H2 perfectly aligning with the ambitious goals of Oman Vision 2040. The overall LCOH for the green hydrogen supply chain is estimated at a highly competitive 6.826 USD/kg demonstrating cost competitiveness when benchmarked against analogous studies. A sensitivity analysis highlights Oman’s potential for cost-efective investments in green hydrogen infrastructure propelling the nation towards a sustainable energy future. This study not only addresses the pressing issue of reducing carbon emissions in the residential sector but also serves as a model for other regions pursuing sustainable energy transitions. The developed simulation models are publicly accessible at https://hychain.co.uk providing a valuable resource for further research and development in the feld of green hydrogen supply chains.
Natural Hydrogen in Uruguay: Catalog of H2-Generating Rocks, Prospective Exploration Areas, and Potential Systems
Feb 2025
Publication
The increasing demand for carbon-free energy in recent years has positioned hydrogen as a viable option. However its current production remains largely dependent on carbon-emitting sources. In this context natural hydrogen generated through geological processes in the Earth’s subsurface has emerged as a promising alternative. The present study provides the first national-scale assessment of natural dihydrogen (H2) potential in Uruguay by developing a catalog of potential H2-generating rocks identifying prospective exploration areas and proposing H2 systems there. The analysis includes a review of geological and geophysical data from basement rocks and onshore sedimentary basins. Uruguay stands out as a promising region for natural H2 exploration due to the significant presence of potential H2-generating rocks in its basement such as large iron formations (BIFs) radioactive rocks and basic and ultrabasic rocks. Additionally the Norte Basin exhibits potential efficient cap rocks including basalts and dolerites with geological analogies to the Mali field. Indirect evidence of H2 in a free gas phase has been observed in the western Norte Basin. This suggests the presence of a potential H2 system in this area linked to the Arapey Formation basalts (seal) and Mesozoic sandstones (reservoir). Furthermore the proposed H2 system could expand exploration opportunities in northeastern Argentina and southern Brazil given the potential presence of similar play/tramp.
Hydrogen SWOT Analysis of Poland’s Energy Transition
Apr 2025
Publication
This paper presents a comprehensive SWOT (strengths weaknesses opportunities and threats) analysis of utilizing hydrogen as a renewable fuel of non-biological origin (RFNBO) in Poland’s energy transition. Given Poland’s reliance on fossil fuels its deep decarbonization poses socio-economic and infrastructural challenges. This study examines the strengths weaknesses opportunities and threats associated with integrating hydrogen as an RFNBO fuel into Poland’s energy mix focusing on economic regulatory technological and social factors. The strengths identified include potential energy independence from fossil fuels increased investment and hydrogen’s applicability in hard-to-abate sectors. Weaknesses involve a low share of renewable hydrogen in the energy mix and the need for infrastructure development. Opportunities arise from European Union policies technological advancements and global trends favoring renewable hydrogen adoption. Threats encompass high production costs regulatory uncertainties and competition from other energy carriers. The analysis concludes that while hydrogen as an RFNBO fuel offers potential for decarbonizing Poland’s energy mix realizing this potential requires large-scale investments a supportive regulatory framework and technological innovation.
Keep it Local and Safe: Which System of Green Hydrogen in Germany is Accepted by Citizens?
Jan 2025
Publication
Transitioning from fossil fuels to renewable energies is imperative for Germany to reduce CO2 emissions and achieve greenhouse gas neutrality by 2045. Green hydrogen holds great potential to contribute to this energy transition by enabling the storage of surplus renewable energy. However Germany's green hydrogen production industry is still in its infancy with only a few green hydrogen plants existing. Studies examining the public's acceptance of green hydrogen production are scarce in this context. Still high societal acceptance can contribute to the future expansion of green hydrogen production in Germany in terms of speed and volume. Therefore our study aims to identify significant factors influencing the German population's acceptance of green hydrogen production within various acceptance groups with differing preferences for future green hydrogen production systems. We conducted an online survey (n=1203) in Germany in 2022/2023 incorporating a choice experiment. Through subsequent latent class analysis four acceptance groups with distinct preferences regarding local green hydrogen production were identified: Unconvinced citizens Security-conscious citizens Regional electricity consumers and Financial beneficiaries. A discriminant analysis identified 9 out of 11 factors as significant for distinguishing between these acceptance groups regarding their preferences for local green hydrogen production: trust in plant safety trust in project managers risk/benefit perception environmental self-identity negative attitude towards renewable energies positive attitude towards renewable energies emotions age and gender. However no significant effects were observed for experience with green hydrogen and distance to the place of residence. Based on our results it is recommended that required renewable energy for green hydrogen production should be produced as close to the green hydrogen plants as possible. It must be ensured and communicated to the public that the (planned) green hydrogen plants meet high safety standards and pose a very low risk of fire or explosion. The neighbouring population should also benefit through annual heating cost savings and financial participation. Implementing these measures can increase acceptance of local green hydrogen production facilitating the transition towards a more sustainable energy future in Germany and beyond.
Towards Net Zero in Poland: A Novel Approach to Power Grid Balance with Centralized Hydrogen Production Units
Mar 2025
Publication
The net zero emissions policy represents a crucial component of the global initiative to address climate change. The European Union has set a target of achieving net zero greenhouse gas emissions by 2050. This study assesses Poland’s feasibility of achieving net zero emissions. Currently Poland relies on fossil fuels for approximately 71% of its electricity generation with electricity accounting for only approximately 16% of the country’s total final energy consumption. Accordingly the transition to net zero carbon emissions will necessitate significant modifications to the energy system particularly in the industrial transport and heating sectors. As this is a long-term process this article demonstrates how the development of renewable energy sources will progressively necessitate the utilisation of electrolysers in line with the ongoing industrial transformation. A new framework for the energy system up to 2060 is presented with transition phases in 2030 2040 and 2050. This study demonstrates that it is feasible to attain a sustainable zero-emission and stable energy system despite reliance on uncontrolled and weather-dependent energy sources. Preparing the electricity grid to transmit almost three times the current amount represents a significant challenge. The resulting simulation capacities comprising 64 GW of onshore wind 33 GW of offshore wind 136 GW of photovoltaic 10 GW of nuclear and 22 GW of electrolysers enable a positive net energy balance to be achieved under the weather conditions observed between 2015 and 2023. To guarantee system stability electrolysers must operate within a centralised framework functioning as centrally controlled dispatchable load units.
Analysis of Carbon Emissions and Carbon Reduction Benefits of Green Hydrogen and Its Derivatives Based on the Full Life Cycle
Oct 2025
Publication
Under the constraints of the “dual carbon” goals accurately depicting the full life cycle carbon footprint of green hydrogen and its derivatives and quantifying the potential for emission reduction is a prerequisite for hydrogen energy policy and investment decisions. This paper constructs a unified life cycle model covering the entire process from “wind and solar power generation–electrolysis of water to producing hydrogen-synthesis of methanol/ammonia-terminal transportation” and includes the manufacturing stage of key front-end equipment and the negative carbon effect of CO2 capture within a single system boundary and also presents an empirical analysis. The results show that the full life cycle carbon emissions of wind power hydrogen production and photovoltaic hydrogen production are 1.43 kgCO2/kgH2 and 3.17 kgCO2/kgH2 respectively both lower than the 4.9 kg threshold for renewable hydrogen in China. Green hydrogen synthesis of methanol achieves a net negative emission of −0.83 kgCO2/kgCH3OH and the emission of green hydrogen synthesis of ammonia is 0.57 kgCO2/kgNH3. At the same time it is predicted that green hydrogen green ammonia and green methanol can contribute approximately 1766 66.62 and 30 million tons of CO2 emission reduction respectively by 2060 providing a quantitative basis for the large-scale layout and policy formulation of the hydrogen energy industry.
The Potential for Renewable and Low-carbon Gas Deployment and Impact on Enabling Infrastucture Development for the Baltic Sea Region
Jul 2025
Publication
The study focuses on the deployment of renewable and low-carbon gases in the Baltic Energy Market Interconnection Plan (BEMIP) region focusing on the 8 BEMIP Member States (Denmark Estonia Finland Germany Latvia Lithuania Poland and Sweden). The report 1) assesses the economic and technical potential supply as well as demand for renewable and low-carbon gases in the BEMIP region; 2) maps current supply infrastructure and demand policies and measures; 3) documents existing technical safety and economic barriers for the development of infrastructure for the integration of biomethane and hydrogen; 4) identifies the hydrogen and methane infrastructure needs to facilitate the integration of renewable and low-carbon gases in the region; and 5) provides recommendations to address identified challenges.
No more items...