Production & Supply Chain
Dynamic Operation of Water Electrolyzers: A Review for Applications in Photovoltaic Systems Integration
May 2023
Publication
This review provides a comprehensive overview of the dynamics of low-temperature water electrolyzers and their influence on coupling the three major technologies alkaline Proton Exchange Membrane (PEM) and Anion Exchange Membrane (AEM) with photovoltaic (PV) systems. Hydrogen technology is experiencing considerable interest as a way to accelerate the energy transition. With no associated CO2 emissions and fast response water electrolyzers are an attractive option for producing green hydrogen on an industrial scale. This can be seen by the ambitious goals and large-scale projects being announced for hydrogen especially with solar energy dedicated entirely to drive the process. The electrical response of water electrolyzers is extremely fast making the slower variables such as temperature and pressure the limiting factors for variable operation typically associated with PV-powered electrolysis systems. The practical solar-to-hydrogen efficiency of these systems is in the range of 10% even with a very high coupling factor exceeding 99% for directly coupled systems. The solar-to-hydrogen efficiency can be boosted with a battery potentially sacrificing the cost. The intermittency of solar irradiance rather than its variability is the biggest challenge for PV-hydrogen systems regarding operation and degradation.
Natural Hydrogen the Fuel of the 21st Century
Jun 2019
Publication
Much has been learned about natural hydrogen (H2) seepages and accumulation but present knowledge of hydrogen behavior in the crust is so limited that it is not yet possible to consider exploitation of this resources. Hydrogen targeting requires a shift in the long-standing paradigms that drive oil and gas exploration. This paper describes the foundation of an integrated source-to-sink view of the hydrogen cycle and propose preliminary practical guidelines for hydrogen exploration.
Optimizing the Installation of a Centralized Green Hydrogen Production Facility in the Island of Crete, Greece
Apr 2024
Publication
The European Union is committed to a 55% reduction in greenhouse gas emissions by 2030 as outlined in the Green Deal and Climate Law initiatives. In response to geopolitical events the RePowerEU initiative aims to enhance energy self-sufficiency reduce reliance on Russian natural gas and promote hydrogen utilization. Hydrogen valleys localized ecosystems integrating various hydrogen supply chain elements play a key role in this transition particularly benefiting isolated regions like islands. This manuscript focuses on optimizing a Centralized Green Hydrogen Production Facility (CGHPF) on the island of Crete. A mixed-integer linear programming framework is proposed to optimize the CGHPF considering factors such as land area wind and solar potential costs and efficiency. Additionally an in-depth sensitivity analysis is conducted to explore the impact of key factors on the economic feasibility of hydrogen investments. The findings suggest that hydrogen can be sold in Crete at prices as low as 3.5 EUR/kg. Specifically it was found in the base scenario that selling hydrogen at 3.5 EUR/kg the net profit of the investment could be as high as EUR 6.19 million while the capacity of the solar and wind installation supplying the grid hydrogen facility would be 23.51 MW and 52.97 MW respectively. It is noted that the high profitability is justified by the extraordinary renewable potential of Crete. Finally based on our study a policy recommendation to allow a maximum of 20% direct penetration of renewable sources of green hydrogen facilities into the grid is suggested to encourage and accelerate green hydrogen expansion.
Design of an Innovative System for Hydrogen Production by Electrolysis Using Waste Heat Recovery Technology in Natural Gas Engines
May 2024
Publication
This research proposes designing and implementing a system to produce hydrogen utilizing the thermal energy from the exhaust gases in a natural gas engine. For the construction of the system a thermoelectric generator was used to convert the thermal energy from the exhaust gases into electrical power and an electrolyzer bank to produce hydrogen. The system was evaluated using a natural gas engine which operated at a constant speed (2400 rpm) and six load conditions (20 % 40 % 60 % 80 % and 100 %). The effect of hydrogen on the engine was evaluated with fuel mixtures (NG + 10 % HEF and NG + 15 % HEF). The results demonstrate that the NG + 10 % HEF and NG + 15 % HEF mixtures allow for a decrease of 1.84 % and 2.33 % in BSFC and an increase of 1.88 % and 2.38 % in BTE. Through the NG + 15 % HEF mixture the engine achieved an energy efficiency of 34.15 % and an exergetic efficiency of 32.84 %. Additionally the NG + 15 % HEF mixture reduces annual CO CO2 and HC emissions by 9.52 % 15.48 % and 13.39 % respectively. The addition of hydrogen positively impacts the engine’s economic cost allowing for a decrease of 1.56 % in the cost of useful work and a reduction of 3.32 % in the cost of exergy loss. In general the proposed system for hydrogen production represents an alternative for utilizing the residual energy from exhaust gases resulting in better performance parameters reduced annual pollutant emissions and lower economic costs.
Photocatalytic Water Splitting: How Far Away Are We from Being Able to Industrially Produce Solar Hydrogen?
Oct 2022
Publication
Solar water splitting (SWS) has been researched for about five decades but despite successes there has not been a big breakthrough advancement. While the three fundamental steps light absorption charge carrier separation and diffusion and charge utilization at redox sites are given a great deal of attention either separately or simultaneously practical considerations that can help to increase efficiency are rarely discussed or put into practice. Nevertheless it is possible to increase the generation of solar hydrogen by making a few little but important adjustments. In this review we talk about various methods for photocatalytic water splitting that have been documented in the literature and importance of the thin film approach to move closer to the large-scale photocatalytic hydrogen production. For instance when comparing the film form of the identical catalyst to the particulate form it was found that the solar hydrogen production increased by up to two orders of magnitude. The major topic of this review with thin-film forms is discussion on several methods of increased hydrogen generation under direct solar and one-sun circumstances. The advantages and disadvantages of thin film and particle technologies are extensively discussed. In the current assessment potential approaches and scalable success factors are also covered. As demonstrated by a film-based approach the local charge utilization at a zero applied potential is an appealing characteristic for SWS. Furthermore we compare the PEC-WS and SWS for solar hydrogen generation and discuss how far we are from producing solar hydrogen on an industrial scale. We believe that the currently employed variety of attempts may be condensed to fewer strategies such as film-based evaluation which will create a path to address the SWS issue and achieve sustainable solar hydrogen generation.
Italian Offshore Platform and Depleted Reservoir Conversion in the Energy Transition Perspective
Aug 2023
Publication
New hypotheses for reusing platforms reaching their end-of-life have been investigated in several works discussing the potential conversions of these infrastructures from recreational tourism to fish farming. In this perspective paper we discuss the conversion options that could be of interest in the context of the current energy transition with reference to the off-shore Italian scenario. The study was developed in support of the development of a national strategy aimed at favoring a circular economy and the reuse of existing infrastructure for the implementation of the energy transition. Thus the investigated options include the onboard production of renewable energy hydrogen production from seawater through electrolyzers CO2 capture and valorization and platform reuse for underground fluid storage in depleted reservoirs once produced through platforms. Case histories are developed with reference to a typical fictitious platform in the Adriatic Sea Italy to provide an engineering-based approach to these different conversion options. The coupling of the platform with the underground storage to set the optimal operational conditions is managed through the forecast of the reservoir performance with advanced numerical models able to simulate the complexity of the phenomena occurring in the presence of coupled hydrodynamic geomechanical geochemical thermal and biological processes. The results of our study are very encouraging because they reveal that no technical environmental or safety issues prevent the conversion of offshore platforms into valuable infrastructure contributing to achieving the energy transition targets as long as the selection of the conversion option to deploy is designed taking into account the system specificity and including the depleted reservoir to which it is connected when relevant. Socio-economic issues were not investigated as they were out of the scope of the project.
Anion Exchange Membrane Water Electrolysis using Aemion™ Membranes and Nickel Electrodes
Jul 2022
Publication
Anion exchange membrane water electrolysis (AEMWE) is a potentially low-cost and sustainable technology for hydrogen production that combines the advantages of proton exchange membrane water electrolysis and traditional alkaline water electrolysis systems. Despite considerable research efforts in recent years the medium-term (100 h) stability of Aemion™ membranes needs further investigation. This work explores the chemical and electrochemical durability (>100 h) of Aemion™ anion exchange membranes in a flow cell using nickel felt as the electrode material on the anode and cathode sides. Remixing the electrolytes between the AEMWE galvanostatic tests was very important to enhance electrolyte refreshment and the voltage stability of the system. The membranes were analyzed by NMR spectroscopy after the AEMWE tests and the results showed no sign of severe chemical degradation. In a separate experiment the chemical stability and mechanical integrity of the membranes were studied by soaking them in a strongly alkaline electrolyte for a month (>700 h) at 90 C followed by NMR analysis. A certain extent of ionic loss was observed due to chemical degradation and the membranes disintegrated into small pieces.
Minimizing Emissions from Grid-based Hydrogen Production in the United States
Jan 2023
Publication
Low-carbon hydrogen could be an important component of a net-zero carbon economy helping to mitigate emissions in a number of hard-to-abate sectors. The United States recently introduced an escalating production tax credit (PTC) to incentivize production of hydrogen meeting increasingly stringent embodied emissions thresholds. Hydrogen produced via electrolysis can qualify for the full subsidy under current federal accounting standards if the input electricity is generated by carbon-free resources but may fail to do so if emitting resources are present in the generation mix. While use of behind-the-meter carbon-free electricity inputs can guarantee compliance with this standard the PTC could also be structured to allow producers using grid-supplied electricity to qualify subject to certain clean energy procurement requirements. Herein we use electricity system capacity expansion modeling to quantitatively assess the impact of grid-connected electrolysis on the evolution of the power sector in the western United States through 2030 under multiple possible implementations of the clean hydrogen PTC. We find that subsidized grid-connected hydrogen production has the potential to induce additional emissions at effective rates worse than those of conventional fossil-based hydrogen production pathways. Emissions can be minimized by requiring grid-based hydrogen producers to match 100% of their electricity consumption on an hourly basis with physically deliverable ‘additional’ clean generation which ensures effective emissions rates equivalent to electrolysis exclusively supplied by behind-the-meter carbon-free generation. While these requirements cannot eliminate indirect emissions caused by competition for limited clean resources which we find to be a persistent result of large hydrogen production subsidies they consistently outperform alternative approaches relying on relaxed time matching or marginal emissions accounting. Added hydrogen production costs from enforcing an hourly matching requirement rather than no requirements are less than $1 kg−1 and can be near zero if clean firm electricity resources are available for procurement.
Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review
Dec 2022
Publication
In this review we compare hydrogen production from waste by pyrolysis and bioprocesses. In contrast the pyrolysis feed was limited to plastic and tire waste unlikely to be utilized by biological decomposition methods. Recent risks of pyrolysis such as pollutant emissions during the heat decomposition of polymers and high energy demands were described and compared to thresholds of bioprocesses such as dark fermentation. Many pyrolysis reactors have been adapted for plastic pyrolysis after successful investigation experiences involving waste tires. Pyrolysis can transform these wastes into other petroleum products for reuse or for energy carriers such as hydrogen. Plastic and tire pyrolysis is part of an alternative synthesis method for smart polymers including semi-conductive polymers. Pyrolysis is less expensive than gasification and requires a lower energy demand with lower emissions of hazardous pollutants. Short-time utilization of these wastes without the emission of metals into the environment can be solved using pyrolysis. Plastic wastes after pyrolysis produce up to 20 times more hydrogen than dark fermentation from 1 kg of waste. The research summarizes recent achievements in plastic and tire waste pyrolysis development.
Economic Analysis: Green Hydrogen Production Systems
May 2023
Publication
The continued use of energy sources based on fossil fuels has various repercussions for the environment. These repercussions are being minimized through the use of renewable energy supplies and new techniques to decarbonize the global energy matrix. For many years hydrogen has been one of the most used gases in all kinds of industry and now it is possible to produce it efficiently on a large scale and in a non-polluting way. This gas is mainly used in the chemical industry and in the oil refining industry but the constant growth of its applications has generated the interest of all the countries of the world. Its use in transportation petrochemical industries heating equipment etc. will result in a decrease in the production of greenhouse gases which are harmful to the environment. This means hydrogen is widely used and needed by countries creating great opportunities for hydrogen export business. This paper details concepts about the production of green hydrogen its associated technologies and demand projections. In addition the current situation of several countries regarding the use of this new fuel their national strategy and advances in research carried out in different parts of the world for various hydrogen generation projects are discussed. Additionally the great opportunities that Chile has for this new hydrogen export business thanks to the renewable energy production capacities in the north and south of the country are discussed. The latter is key for countries that require large amounts of hydrogen to meet the demand from various industrial energy and transportation sectors. Therefore it is of global importance to determine the real capacities that this country has in the face of this new green fuel. For this modeling was carried out through mathematical representations showing the behavior of the technologies involved in the production of hydrogen for a system composed of an on-grid photovoltaic plant an electrolyser and compressor together with a storage system. The program optimized the capacities of the equipment in such a way as to reduce the costs of hydrogen production and thereby demonstrate Chile’s capacity for the production of this fuel. From this it was found that the LCOH for the case study was equivalent to 3.5 USD/kg which is not yet considered a profitable value for the long term. Due to this five case studies were analyzed to see what factors influence the LCOH and thereby reduce it as much as possible.
Enhancing Wind-solar Hybrid Hydrogen Production through Multi-state Electrolyzer Management and Complementary Energy Optimization
Jan 2024
Publication
Wind-solar hybrid hydrogen production is an effective technique route by converting the fluctuate renewable electricity into high-quality hydrogen. However the intermittency of wind and solar resources also exert chal lenges to the efficient hydrogen production. In order to address this issue this paper developed a day-ahead scheduling strategy based on multi-state transitions of the alkaline electrolyzer(AEL) which improves system flexibility by coordinating the operation of the electrolyzer with the battery. Meanwhile K-means+ + algorithm is also applied to scenario clustering and then proposed a capacity configuration method. Based on the adopted case study the wind-solar installed capacity of the designed hydrogen production system it first optimized and the power fluctuation is mitigated with the complementarity index considering volatility of 12.49%. Moreover the adopted scheduling strategy effectively reduces idle and standby states of the electrolyzer with the daily average energy utilization rate of 12 typical scenarios reaching 92.83%. In addition the wind-solar hydrogen system exhibits favorable economic potential the internal return rate and the investment payback period reach to 6.81% and 12.87 years respectively. This research provides valuable insights for efficiently producing hydrogen using renewable energy sources and promoting their synergistic operation.
Renewable-power-assisted Production of Hydrogen and Liquid Hydrocarbons from Natural Gas: Techno-economic Analysis
Jun 2022
Publication
The declining cost of renewable power has engendered growing interest in leveraging this power for the production of chemicals and synthetic fuels. Here renewable power is added to the gas-to-liquid (GTL) process through Fischer–Tropsch (FT) synthesis in order to increase process efficiency and reduce CO2 emissions. Accordingly two realistic configurations are considered which differ primarily in the syngas preparation step. In the first configuration solid oxide steam electrolysis cells (SOEC) in combination with an autothermal reformer (ATR) are used to produce synthesis gas with the right composition while in the second configuration an electrically-heated steam methane reformer (E-SMR) is utilized for syngas production. The results support the idea of adding power to the GTL process mainly by increased process efficiencies and reduced process emissions. Assuming renewable power is available the process emissions would be 200 and 400 gCO2 L1 syncrude for the first and second configurations respectively. Configuration 1 and 2 show 8 and 4 times less emission per liter syncrude produced respectively compared to a GTL plant without H2 addition with a process emission of 1570 gCO2 L1 syncrude. By studying the two designs based on FT production carbon efficiency and FT catalyst volume a better alternative is to add renewable power to the SOEC (configuration 1) rather than using it in an E-SMR (configuration 2). Given an electricity price of $100/MW h and natural gas price of 5 $ per GJ FT syncrude and H2 can be produced at a cost between $15/MW h and $16/MW h. These designs are considered to better utilize the available carbon resources and thus expedite the transition to a low-carbon economy
Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector
Feb 2021
Publication
Achieving European climate neutrality by 2050 requires further efforts not only from the industry and society but also from policymakers. The use of high-efficiency cogeneration facilities will help to reduce both primary energy consumption and CO2 emissions because of the increase in overall efficiency. Fuel cell-based cogeneration technologies are relevant solutions to these points for small- and microscale units. In this research an innovative and new fuel cell-based cogeneration plant is studied and its performance is compared with other cogeneration technologies to evaluate the potential reduction degree in energy consumption and CO2 emissions. Four energy consumption profile datasets have been generated from real consumption data of different dwellings located in the Mediterranean coast of Spain to perform numerical simulations in different energy scenarios according to the fuel used in the cogeneration. Results show that the fuel cell-based cogeneration systems reduce primary energy consumption and CO2 emissions in buildings to a degree that depends on the heat-to-power ratio of the consumer. Primary energy consumption varies from 40% to 90% of the original primary energy consumption when hydrogen is produced from natural gas reforming process and from 5% to 40% of the original primary energy consumption if the cogeneration is fueled with hydrogen obtained from renewable energy sources. Similar reduction degrees are achieved in CO2 emissions.
Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis
May 2022
Publication
Currently hydrogen is mainly generated by steam methane reforming with significant CO2 emissions thus exacerbating the greenhouse effect. This environmental concern promotes methane cracking which represents one of the most promising alternatives for hydrogen production with theoretical zero CO/CO2 emissions. Methane cracking has been intensively investigated using metallic and carbonaceous catalysts. Recently research has focused on methane pyrolysis in molten metals/salts to prevent both reactor coking and rapid catalyst deactivation frequently encountered in conventional pyrolysis. Another expected advantage is the heat transfer improvement due to the high heat capacity of molten media. Apart from the reaction itself that produces hydrogen and solid carbon the energy source used in this endothermic process can also contribute to reducing environmental impacts. While most researchers used nonrenewable sources based on fossil fuel combustion or electrical heating concentrated solar energy has not been thoroughly investigated to date for pyrolysis in molten media. However it could be a promising innovative pathway to further improve hydrogen production sustainability from methane cracking. After recalling the basics of conventional catalytic methane cracking and the developed solar cracking reactors this review delves into the most significant results of the state-of-the-art methane pyrolysis in melts (molten metals and salts) to show the advantages and the perspectives of this new path as well as the carbon products’ characteristics and the main factors governing methane conversion.
The Cost Reduction Analysis of Green Hydrogen Production from Coal Mine Underground Water for Circular Economy
May 2024
Publication
The novelty of the paper is the analysis of the possibilities of reducing the operating costs of a mine water pumping station in an abandoned coal mine. To meet the energy needs of the pumping station and reduce the carbon footprint “green” energy from a photovoltaic farm was used. Surplus green energy generated during peak production is stored in the form of green hydrogen from the water electrolysis process. Rainwater and process water are still underutilized sources for increasing water resources and reducing water stress in the European Union. The article presents the possibilities of using these waters after purification in the production of green hydrogen by electrolysis. The article also presents three variants that ensure the energy self-sufficiency of the proposed concepts of operation of the pumping station.
Green Hydrogen Driven by Wind and Solar—An Australian Case Study
Apr 2024
Publication
The energy transition to wind and solar opens up opportunities for green hydrogen as wind and solar generation tend to bring electricity prices down to very low levels. We evaluate whether green hydrogen can integrate well with wind and solar PVs to improve the South Australian electricity grid. Green hydrogen can use membrane electrolysis plants during periods of surplus renewable energy. This hydrogen can then be electrified or used in industry. The green hydrogen system was analysed to understand the financial viability and technical impact of integrating green hydrogen. We also used system engineering techniques to understand the system holistically including the technical social environmental and economic impacts. The results show opportunities for the system to provide seasonal storage grid firming and reliability services. Financially it would need changes to electricity rules to be viable so at present it would not be viable without subsidy.
Review on COx-free Hydrogen from Methane Cracking: Catalysts, Solar Energy Integration and Applications
Oct 2021
Publication
Hydrogen fuel production from methane cracking is a sustainable process compared to the ones currently in practice due to minimal greenhouse gas emissions. Carbon black that is co-produced is a valuable product and can be marketed to other industries. As this is a high-temperature process using concentrated solar energy can further improve its sustainability. In this study a detailed review is conducted to study the advancements in methane cracking for hydrogen production using different catalysts. Various solar reactors developed for methane cracking are discussed. The application of hydrogen to produce other valuable chemicals are outlined. Hydrogen carriers such as methanol dimethyl ether ammonia and urea can efficiently store hydrogen energy and enable easier transportation. Further research in the field of methane cracking is required for reactor scale-up improved economics and to reduce the problems arising from carbon deposition leading to reactor clogging and catalyst deactivation.
Hydrogenerally - Episode 10: Green Hydrogen Production
Feb 2023
Publication
Debra Jones Chemistry Knowledge Transfer Manager and Simon Buckley Zero Emission Mobility Knowledge Transfer Manager from Innovate UK KTN talk about green hydrogen production with their special guest Chris Jackson CEO & Founder at Protium.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
Hydrogenerally - Episode 6: Waste to Hydrogen
Nov 2022
Publication
In this sixth episode Steffan Eldred Hydrogen Innovation Network Knowledge Transfer Manager and Debra Jones Chemistry Knowledge Transfer Manager from Innovate UK KTN discuss why converting waste to hydrogen is so important and explore the hydrogen transition opportunities and challenges in this sector alongside their special guest Rob Dent Senior Research Engineer - Energy Linde and Application Sales Engineer at BOC UK & Ireland.
The podcast can be found on their website.
The podcast can be found on their website.
Cost Benefit Analysis for Green Hydrogen Production from Treated Effluent: The Case Study of Oman
Nov 2022
Publication
Recently the management of water and wastewater is gaining attention worldwide as a way of conserving the natural resources on the planet. The traditional wastewater treatment in Oman is such that the treated effluent produced is only reused for unfeasible purposes such as landscape irrigation cooling or disposed of in the sea. Introducing more progressive reuse applications can result in achieving a circular economy by considering treated effluent as a source of producing new products. Accordingly wastewater treatment plants can provide feedstock for green hydrogen production processes. The involvement of the wastewater industry in the green pathway of production scores major points in achieving decarbonization. In this paper the technical and economic feasibility of green hydrogen production in Oman was carried out using a new technique that would help explore the benefits of the treated effluent from wastewater treatment in Oman. The feasibility study was conducted using the Al Ansab sewage treatment plant in the governate of Muscat in Wilayat (region) Bousher. The results have shown that the revenue from Al Ansab STP in a conventional case is 7.02 million OMR/year while sustainable alternatives to produce hydrogen from the Proton Exchange Membrane (PEM) electrolyzer system for two cases with capacities of 1500 kg H2/day and 50000 kg H2/day would produce revenue of 8.30 million OMR/year and 49.73 million OMR/year respectively.
No more items...