Production & Supply Chain
Offshore Green Hydrogen Production from Wind Energy: Critical Review and Perspective
Feb 2024
Publication
Hydrogen is envisaged to play a major role in decarbonizing our future energy systems. Hydrogen is ideal for storing renewable energy over longer durations strengthening energy security. It can be used to provide electricity renewable heat power long-haul transport shipping and aviation and in decarbonizing several industrial processes. The cost of green hydrogen produced from renewable via electrolysis is dominated by the cost of electricity used. Operating electrolyzers only during periods of low electricity prices will limit production capacity and underutilize high investment costs in electrolyzer plants. Hydrogen production from deep offshore wind energy is a promising solution to unlock affordable electrolytic hydrogen at scale. Deep offshore locations can result in an increased capacity factor of generated wind power to 60–70% 4–5 times that of onshore locations. Dedicated wind farms for electrolysis can use the majority >80% of the produced energy to generate economical hydrogen. In some scenarios hydrogen can be the optimal carrier to transport the generated energy onshore. This review discusses the opportunities and challenges in offshore hydrogen production using electrolysis from wind energy and seawater. This includes the impact of site selection size of the electrolyzer and direct use of seawater without deionization. The review compares overall electrolysis system efficiency cost and lifetime when operating with direct seawater feed and deionized water feed using reverse osmosis and flash evaporation systems. In the short to medium term it is advised to install a reverse osmosis plant with an ion exchanger to feed the electrolysis instead of using seawater directly.
Research on Fast Frequency Response Control Strategy of Hydrogen Production Systems
Mar 2024
Publication
With the large-scale integration of intermittent renewable energy generation presented by wind and photovoltaic power the security and stability of power system operations have been challenged. Therefore this article proposes a control strategy of a hydrogen production system based on renewable energy power generation to enable the fast frequency response of a grid. Firstly based on the idea of virtual synchronous control a fast frequency response control transformation strategy for the grid-connected interface of hydrogen production systems for renewable energy power generation is proposed to provide active power support when the grid frequency is disturbed. Secondly based on the influence of VSG’s inertia and damping coefficient on the dynamic characteristics of the system a VSG adaptive control model based on particle swarm optimization is designed. Finally based on the Matlab/Simulink platform a grid-connected simulation model of hydrogen production systems for renewable energy power generation is established. The results show that the interface-transformed electrolytic hydrogen production device can actively respond to the frequency disturbances of the power system and participate in primary frequency control providing active support for the frequency stability of the power system under high-percentage renewable energy generation integration. Moreover the system with parameter optimization has better fast frequency response control characteristics.
Green Hydrogen Production and Liquefaction Using Offshore Wind Power, Liquid Air, and LNG Cold Energy
Sep 2023
Publication
Coastal regions have abundant off-shore wind energy resources and surrounding areas have large-scale liquefied natural gas (LNG) receiving stations. From the engineering perspectives there are limitations in unstable off-shore wind energy and fluctuating LNG loads. This article offers a new energy scheme to combine these 2 energy units which uses surplus wind energy to produce hydrogen and use LNG cold energy to liquefy and store hydrogen. In addition in order to improve the efficiency of utilizing LNG cold energy and reduce electricity consumption for liquid hydrogen (LH2) production at coastal regions this article introduces the liquid air energy storage (LAES) technology as the intermediate stage which can stably store the cold energy from LNG gasification. A new scheme for LNG-LAES-LH2 hybrid LH2 production is built. The case study is based on a real LNG receiving station at Hainan province China and this article presents the design of hydrogen production/liquefaction process and carries out the optimizations at key nodes and proves the feasibility using specific energy consumption and exergy analysis. In a 100 MW system the liquid air storage round-trip efficiency is 71.0% and the specific energy consumption is 0.189 kWh/kg and the liquid hydrogen specific energy consumption is 7.87 kWh/kg and the exergy efficiency is 46.44%. Meanwhile the corresponding techno-economic model is built and for a LNGLAES-LH2 system with LH2 daily production 140.4 tons the shortest dynamic payback period is 9.56 years. Overall this novel hybrid energy scheme can produce green hydrogen using a more efficient and economical method and also can make full use of surplus off-shore wind energy and coastal LNG cold energy.
It Is Not the Same Green: A Comparative LCA Study of Green Hydrogen Supply Network Pathways
Jul 2024
Publication
Green hydrogen (H2 ) a promising clean energy source garnering increasing attention worldwide can be derived through various pathways resulting in differing levels of greenhouse gas emissions. Notably Green H2 production can utilize different methods such as integrating standard photovoltaic panels thermal photovoltaic or concentrated photovoltaic thermal collectors with electrolyzers. Furthermore it can be conditioned to different states or carriers including liquefied H2 compressed H2 ammonia and methanol and stored and transported using various methods. This paper employs the Life Cycle Assessment methodology to compare 18 different green hydrogen pathways and provide recommendations for greening the hydrogen supply chain. The findings indicate that the production pathway utilizing concentrated photovoltaic thermal panels for electricity generation and hydrogen compression in the conditioning and transportation stages exhibits the lowest environmental impact emitting only 2.67 kg of CO2 per kg of H2 .
Development of a Dynamic Mathematical Model of PEM Electrolyser for Integration into Large-scale Power Systems
May 2024
Publication
Proton exchange membrane (PEM) electrolyser stands as a promising candidate for sustainable hydrogen pro duction from renewable energy sources (RESs). Given the fluctuating nature of RESs accurate modelling of the PEM electrolyser is crucial. Nonetheless complex models of the PEM electrolyser demand substantial time and resource investments when integrating them into a large-scale power system. The majority of introduced models in the literature are either overly intricate or fail to effectively reproduce the dynamic behaviour of the PEM electrolyser. To this end this article aims to develop a model that not only captures the dynamic response of the PEM electrolyser crucial for conducting flexibility studies in the power system but also avoids complexity for seamless integration into large-scale simulations without comprising accuracy. To verify the model it is vali dated against static and dynamic experimental data. Compared to the investigated experimental cases the model exhibited an average error of 0.66% and 3.93% in the static and dynamic operation modes respectively.
Life Cycle Analysis of Hydrogen Production by Different Alkaline Electrolyser Technologies Sourced with Renewable Energy
Jul 2024
Publication
Green hydrogen has been considered a promising alternative to fossil fuels in chemical and energy applications. In this study a life cycle analysis is conducted for green hydrogen production sourced with a mixture of renewable energy sources (50 % solar and 50 % wind energy). Two advanced technologies of alkaline electrolysis are selected and compared for hydrogen production: pressurised alkaline electrolyser and capillary-fed alkaline electrolyser. The different value chain stages were assessed in SimaPro enabling the assessment of the environmental impacts of a green hydrogen production project with 60 MW capacity and 20 years lifetime. The results evaluate the environmental impacts depending on the components construction and operation requirements. The results demonstrated that capillary-fed alkaline electrolyser technology has lower potential environmental impacts by around 17 % than pressurised alkaline electrolyser technology for all the process stages. The total global warming potential was found to be between 1.98 and 2.39 kg of carbon dioxide equivalent per kg of hydrogen. This study contributes to the electrolysers industry and the planning of green hydrogen projects for many applications towards decarbonization and sustainability.
Understanding Degradation Effects of Elevated Temperature Operating Conditions in Polymer Electrolyte Water Electrolyzers
Apr 2021
Publication
The cost of polymer electrolyte water electrolysis (PEWE) is dominated by the price of electricity used to power the water splitting reaction. We present a liquid water fed polymer electrolyte water electrolyzer cell operated at a cell temperature of 100 °C in comparison to a cell operated at state-of-the-art operation temperature of 60 °C over a 300 h constant current period. The hydrogen conversion efficiency increases by up to 5% at elevated temperature and makes green hydrogen cheaper. However temperature is a stress factor that accelerates degradation causes in the cell. The PEWE cell operated at a cell temperature of 100 °C shows a 5 times increased cell voltage loss rate compared to the PEWE cell at 60 °C. The initial performance gain was found to be consumed after a projected operation time of 3500 h. Elevated temperature operation is only viable if a voltage loss rate of less than 5.8 μV h−1 can be attained. The major degradation phenomena that impact performance loss at 100 °C are ohmic (49%) and anode kinetic losses (45%). Damage to components was identified by post-test electron-microscopic analysis of the catalyst coated membrane and measurement of cation content in the drag water. The chemical decomposition of the ionomer increases by a factor of 10 at 100 °C vs 60 °C. Failure by short circuit formation was estimated to be a failure mode after a projected lifetime 3700 h. At elevated temperature and differential pressure operation hydrogen gas cross-over is limiting since a content of 4% hydrogen in oxygen represents the lower explosion limit.
Palladium-alloy Membrane Reactors for Fuel Reforming and Hydrogen Production: Hydrogen Production Modelling
Jul 2023
Publication
Endeavors have recently been concentrated on minimizing the dependency on fossil fuels in order to mitigate the ever-increasing problem of greenhouse gas (GHG) emissions. Hydrogen energy is regarded as an alternative to fossil fuels due to its cleaner emission attributes. Reforming of hydrocarbon fuels is amongst the most popular and widely used methods for hydrogen production. Hydrogen produced from reforming processes requires additional processes to separate from the reformed gases. In some cases further purification of hydrogen has to be carried out to use the hydrogen in power generation applications. Metallic membranes especially palladium (Pd)-based ones have demonstrated sustainable hydrogen separation potential with around 99.99% hydrogen purity. Comprehensive and critical research investigations must be performed to optimize membrane-assisted reforming as well as to maximize the production of hydrogen. The computational fluid dynamic (CFD) can be an excellent tool to analyze and visualize the flow/reaction/permeation mechanisms at a lower cost in contrast with the experiments. In order to provide the necessary background knowledge on membrane reactor modeling this study reviews summarizes and analyses the kinetics of different fuel reforming processes equations to determine hydrogen permeation and lastly various geometry and operating condition adopted in the literature associated with membrane-reactor modeling works. It is indicated that hydrogen permeation through Pd-membranes depends highly on the difference in hydrogen pressure. It is found that hydrogen permeation can be improved by employing different pressure configuration introducing sweep flow on the permeate side of the membrane reducing retentate side flow rate and increasing the temperature.
Energy-exergy Evaluation of Liquefied Hydrogen Production System Based on Steam Methane Reforming and LNG Revaporization
Jul 2023
Publication
The research motivation of this paper is to utilize the large amount of energy wasted during the LNG (liquefied natural gas) gasification process and proposes a synergistic liquefied hydrogen (LH2) production and storage process scheme for LNG receiving station and methane reforming hydrogen production process - SMR-LNG combined liquefied hydrogen production system which uses the cold energy from LNG to pre-cool the hydrogen and subsequently uses an expander to complete the liquefaction of hydrogen. The proposed process is modeled and simulated by Aspen HYSYS software and its efficiency is evaluated and sensitivity analysis is carried out. The simulation results show that the system can produce liquefied hydrogen with a flow rate of 5.89t/h with 99.99% purity when the LNG supply rate is 50t/h. The power consumption of liquefied hydrogen is 46.6kWh/kg LH2; meanwhile the energy consumption of the HL subsystem is 15.9kWh/kg LH2 lower than traditional value of 17~19kWh/kg LH2. The efficiency of the hydrogen production subsystem was 16.9%; the efficiency of the hydrogen liquefaction (HL) subsystem was 29.61% which was significantly higher than the conventional industrial value of 21%; the overall energy efficiency (EE1) of the system was 56.52% with the exergy efficiency (EE2) of 22.2% reflecting a relatively good thermodynamic perfection. The energy consumption of liquefied hydrogen per unit product is 98.71 GJ/kg LH2.
Probabilistic Analysis of Low-Emission Hydrogen Production from a Photovoltaic Carport
Oct 2024
Publication
This article presents a 3D model of a yellow hydrogen generation system that uses the electricity produced by a photovoltaic carport. The 3D models of all key system components were collected and their characteristics were described. Based on the design of the 3D model of the photovoltaic carport the amount of energy produced monthly was determined. These quantities were then applied to determine the production of low-emission hydrogen. In order to increase the amount of low-emission hydrogen produced the usage of a stationary energy storage facility was proposed. The Metalog family of probability distributions was adopted to develop a strategic model for low-emission hydrogen production. The hydrogen economy of a company that uses small amounts of hydrogen can be based on such a model. The 3D modeling and calculations show that it is possible to design a compact low-emission hydrogen generation system using rapid prototyping tools including the photovoltaic carport with an electrolyzer placed in the container and an energy storage facility. This is an effective solution for the climate and energy transition of companies with low hydrogen demand. In the analytical part the Metalog probability distribution family was employed to determine the amount of monthly energy produced by 6.3 kWp photovoltaic systems located in two European countries: Poland and Italy. Calculating the probability of producing specific amounts of hydrogen in two European countries is an answer to a frequently asked question: In which European countries will the production of low-emission hydrogen from photovoltaic systems be the most profitable? As a result of the calculations for the analyzed year 2023 in Poland and Italy specific answers were obtained regarding the probability of monthly energy generation and monthly hydrogen production. Many companies from Poland and Italy are taking part in the European competition to create hydrogen banks. Only those that offer low-emission hydrogen at the lowest prices will receive EU funding.
Conceptual Design of an Offshore Hydrogen Platform
Feb 2024
Publication
Offshore green hydrogen emerges as a guiding light in the global pursuit of environmental sustainability and net-zero objectives. The burgeoning expansion of offshore wind power faces significant challenges in grid integration. This avenue towards generating offshore green hydrogen capitalises on its ecological advantages and substantial energy potential to efficiently channel offshore wind power for onshore energy demands. However a substantial research void exists in efficiently integrating offshore wind electricity and green hydrogen. Innovative designs of offshore hydrogen platforms present a promising solution to bridge the gap between offshore wind and hydrogen integration. Surprisingly there is a lack of commercially established offshore platforms dedicated to the hydrogen industry. However the wealth of knowledge from oil and gas platforms contributes valuable insights to hydrogen platform design. Diverging from the conventional decentralised hydrogen units catering to individual turbines this study firstly introduces a pioneering centralised Offshore Green Hydrogen Platform (OGHP) which seamlessly integrates modular production storage and offloading modulars. The modular design of facilitates scalability as wind capacity increases. Through a detailed case study centred around a 100-Megawatt floating wind farm the design process of offshore green hydrogen modulars and its floating sub-structure is elucidated. Stability analysis and hydrodynamic analysis are performed to ensure the safety of the OGHP under the operation conditions. The case study will enhance our understanding OGHP and its modularised components. The conceptual design of modular OGHP offers an alternative solution to ‘‘Power-to-X’’ for offshore renewable energy sector.
Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties
Nov 2023
Publication
Hydrogen production modules (HPMs) play a crucial role in harnessing abundant photovoltaic power by producing and supplying hydrogen to factories resulting in significant operational cost reductions and efficient utilization of the photovoltaic panel output. However the output of photovoltaic power is stochastic which will affect the revenue of investing in an HPM. This paper presents a comprehensive analysis of HPMs starting with the modeling of their operational process and investigating their influence on distribution system operations. Building upon these discussions a deterministic optimization model is established to address the corresponding challenges. Furthermore a two-stage stochastic planning model is proposed to determine optimal locations and sizes of HPMs in distribution systems accounting for uncertainties. The objective of the twostage stochastic planning model is to minimize the distribution system’s operational costs plus the investment costs of the HPM subject to power flow constraints. To tackle the stochastic nature of photovoltaic power a data-driven algorithm is introduced to cluster historical data into representative scenarios effectively reducing the planning model’s scale. To ensure an efficient solution a Benders’ decomposition-based algorithm is proposed which is an iterative method with a fast convergence speed. The proposed model and algorithms are validated using a widely utilized IEEE 33-bus system through numerical experiments demonstrating the optimality of the HPM plan generated by the algorithm. The proposed model and algorithms offer an effective approach for decision-makers in managing uncertainties and optimizing HPM deployment paving the way for sustainable and efficient energy solutions in distribution systems. Sensitivity analysis verifies the optimality of the HPM’s siting and sizing obtained by the proposed algorithm which also reveals immense economic and environmental benefits.
Green with Envy? Hydrogen Production in a Carbon-constrained World
Jan 2024
Publication
Hydrogen is widely recognized as a key component of a decarbonized global energy system serving as both a fuel source and an energy storage medium. While current hydrogen production relies almost entirely on emissionsintensive processes two low-emissions production pathways – natural-gas-derived production combined with carbon capture and storage and electrolysis using carbon-free electricity – are poised to change the global supply mix. Our study assesses the financial conditions under which natural-gas-based hydrogen production combined with carbon capture and storage would be available at a cost lower than hydrogen produced through electrolysis and the degree to which these conditions are likely to arise in a transition to a net-zero world. We also assess the degree to which emissions reduction policies namely carbon pricing and carbon capture and storage tax credits affect the relative costs of hydrogen production derived from different pathways. We show that while carbon pricing can improve the relative cost of both green and blue hydrogen production compared with unabated grey hydrogen targeted tax credits favouring either blue or green hydrogen explicitly may increase emissions and/or increase the costs of the energy transition.
Synergy of Carbon Capture, Waste Heat Recovery and Hydrogen Production for Industrial Decarbonisation
May 2024
Publication
Industry is the biggest sector of energy consumption and greenhouse gas emissions whose decarbonisation is essential to achieve the Sustainable Development Goals. Carbon capture energy efficiency improvement and hydrogen are among the main strategies for industrial decarbonization. However novel approaches are needed to address the key requirements and differences between sectors to ensure they can work together to well integrate industrial decarbonisation with heat CO2 and hydrogen. The emerging Calcium Looping (CaL) is attracting interest in designing CO2-involved chemical processes for heat capture and storage. The reversibility relatively high-temperature (600 to 900 ◦C) and high energy capacity output as well as carbon capture function make CaL well-fit for CO2 capture and utilisation and waste heat recovery from industrial flue gases. Meanwhile methane dry reforming (MDR) is a promising technology to produce blue hydrogen via the consumption of two major greenhouse gases i.e. CO2 and CH4. It has great potential to combine the two technologies to achieve insitu CO2 utilization with multiple benefits. In this paper progresses on the reaction conditions and performance of CaL for CO2 capture and industrial waste heat recovery as well as MDR were screened. Secondly recent approaches to CaL-MDR synergy have been reviewed to identify the advantages. The major challenges in such a synergistic process include MDR catalyst deactivation CaL sorbents sintering and system integration. Thirdly the paper outlooks future work to explore a rational design of a multi-function system for the proposed synergistic process.
PEM Water Electrolysis for Hydrogen Production: Fundamentals, Advances, and Prospects
Jun 2022
Publication
Hydrogen as a clean energy carrier is of great potential to be an alternative fuel in the future. Proton exchange membrane (PEM) water electrolysis is hailed as the most desired technology for high purity hydrogen production and self-consistent with volatility of renewable energies has ignited much attention in the past decades based on the high current density greater energy efficiency small mass-volume characteristic easy handling and maintenance. To date substantial efforts have been devoted to the development of advanced electrocatalysts to improve electrolytic efficiency and reduce the cost of PEM electrolyser. In this review we firstly compare the alkaline water electrolysis (AWE) solid oxide electrolysis (SOE) and PEM water electrolysis and highlight the advantages of PEM water electrolysis. Furthermore we summarize the recent progress in PEM water electrolysis including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts in the acidic electrolyte. We also introduce other PEM cell components (including membrane electrode assembly current collector and bipolar plate). Finally the current challenges and an outlook for the future development of PEM water electrolysis technology for application in future hydrogen production are provided.
Techno-economic Viability of Decentralised Solar Photovoltaic-based Green Hydrogen Production for Sustainable Energy Transition in Ghana
Feb 2024
Publication
Transition to a sustainable energy supply is essential for addressing the challenges of climate change and achieving a low-carbon future. Green hydrogen produced from solar photovoltaic (PV) systems presents a promising solution in Ghana where energy demands are increasing rapidly. The levelized cost of hydrogen (LCOH) is considered a critical metric to evaluate hydrogen production techniques cost competitiveness and economic viability. This study presents a comprehensive analysis of LCOH from solar PV systems. The study considered a 5 MW green hydrogen production plant in Ghana’s capital Accra as a proposed system. The results indicate that the LCOH is about $9.49/kg which is comparable to other findings obtained within the SubSaharan Africa region. The study also forecasted that the LCOH for solar PV-based hydrogen produced will decrease to $5–6.5/kg by 2030 and $2–2.5/kg by 2050 or lower making it competitive with fossil fuel-based hydrogen. The findings of this study highlight the potential of green hydrogen as a sustainable energy solution and its role in driving the country’s net-zero emissions agenda in relation to its energy transition targets. The study’s outcomes are relevant to policymakers researchers investors and energy stakeholders in making informed decisions regarding deploying decentralised green hydrogen technologies in Ghana and similar contexts worldwide.
Utilization of Hydro Sources in Canada for Green Hydrogen Fuel Production
Oct 2024
Publication
The present study comprehensively examines the application of hydro wave tidal undersea current and geothermal energy sources of Canada for green hydrogen fuel production. The estimated potential capacity of each province is derived from official data and acceptable assumptions and is subject to discussion and evaluation in the context of a viable hydrogen economy. According to the findings the potential for green hydrogen generation in Canada is projected to be 48.86 megatons. The economic value of the produced green hydrogen results in an equivalent of 21.30 billion US$. The top three provinces with the highest green hydrogen production potential using hydro resources including hydro wave tidal undersea current and geothermal are Alberta Quebec and British Columbia with 26.13 Mt 7.34 Mt and 4.39 Mt respectively. Quebec is ranked first by only considering the marine sources including 4.14 Mt with hydro 1.46 Mt with wave 0.27 Mt underwater current and 1.45 Mt with tidal respectively. Alberta is listed as the province with the highest capacity for hydrogen production from geothermal energy amounting up to 26.09 Mt. The primary objective is to provide comprehensive hydrogen maps for each province in Canada which will be based on the identified renewable energy potential and the utilization of electrolysers. This may further be examined within the framework of the prevailing policies implemented by local communities and officials in order to develop a sustainable energy plan for the nation.
Critical Review of Life Cycle Assessment of Hydrogen Production Pathways
May 2024
Publication
In light of growing concerns regarding greenhouse gas emissions and the increasingly severe impacts of climate change the global situation demands immediate action to transition towards sustainable energy solutions. In this sense hydrogen could play a fundamental role in the energy transition offering a potential clean and versatile energy carrier. This paper reviews the recent results of Life Cycle Assessment studies of different hydrogen production pathways which are trying to define the routes that can guarantee the least environmental burdens. Steam methane reforming was considered as the benchmark for Global Warming Potential with an average emission of 11 kgCO2eq/kgH2. Hydrogen produced from water electrolysis powered by renewable energy (green H2 ) or nuclear energy (pink H2 ) showed the average lowest impacts with mean values of 2.02 kgCO2eq/kgH2 and 0.41 kgCO2eq/kgH2 respectively. The use of grid electricity to power the electrolyzer (yellow H2 ) raised the mean carbon footprint up to 17.2 kgCO2eq/kgH2 with a peak of 41.4 kgCO2eq/kgH2 in the case of countries with low renewable energy production. Waste pyrolysis and/or gasification presented average emissions three times higher than steam methane reforming while the recourse to residual biomass and biowaste significantly lowered greenhouse gas emissions. The acidification potential presents comparable results for all the technologies studied except for biomass gasification which showed significantly higher and more scattered values. Regarding the abiotic depletion potential (mineral) the main issue is the lack of an established recycling strategy especially for electrolysis technologies that hamper the inclusion of the End of Life stage in LCA computation. Whenever data were available hotspots for each hydrogen production process were identified.
A Parametric Study on In-situ Hydrogen Production from Hydrocarbon Reservoirs - Effect of Reservoir and Well Properties
Jul 2024
Publication
Energy transition is a key driver to combat climate change and achieve zero carbon future. Sustainable and costeffective hydrogen production will provide valuable addition to the renewable energy mix and help minimize greenhouse gas emissions. This study investigates the performance of in-situ hydrogen production (IHP) process using a full-field compositional model as a precursor to experimental validation The reservoir model was simulated as one geological unit with a single point uniform porosity value of 0.13 and a five-point connection type between cell to minimize computational cost. Twenty-one hydrogen forming reactions were modelled based on the reservoir fluid composition selected for this study. The thermodynamic and kinetic parameters for the reactions were obtained from published experiments due to the absence of experimental data specific to the reservoir. A total of fifty-four simulation runs were conducted using CMG STARS software for 5478 days and cumulative hydrogen produced for each run was recorded. Results generated were then used to build a proxy model using Box-Behnken design of experiment method and Support Vector Machine with RBF kernel. To ascertain accuracy of the proxy models analysis of variance (ANOVA) was conducted on the variables. The average absolute percentage error between the proxy model and numerical simulation was calculated to be 10.82%. Optimization of the proxy model was performed using genetic algorithm to maximize cumulative hydrogen produced. Based on this optimized model the influence of porosity permeability well location injection rate and injection pressure were studied. Key results from this study reveals that lower permeability and porosity reservoirs supports more hydrogen yield injection pressure had a negligible effect on hydrogen yield and increase in oxygen injection rate corelated strongly with hydrogen production until a threshold value beyond which hydrogen yield decreased. The framework developed in the study could be used as tool to assess candidate reservoirs for in-situ hydrogen production.
Hydrogen Production from Low-quality Water: Challenges and Perspectives
Sep 2022
Publication
The Next Generation EU plan fosters the development of a large capacity for hydrogen generation. However water and energy resources are strictly connected to an indissoluble nexus. For that water electrolysis may counteract the coexistence of two primary UNO Sustainable Development Goals humankind must face to achieve a prosperous and equal society namely SDG 7 (Affordable access to renewable energy sources) and SDG 6 (clean water). To design innovative energy systems implementing hydrogen as an efficient and sustainable vector water resources need careful management and energy use ought not to compete with freshwater delivery. Therefore the present study reviews the technologies available for hydrogen production and their fitness to water quality standards. Among the feeding possibilities to be scrutinized wastewaters and saline waters are worth attention. Each source of water asks for a specific design and management of the water treatment pre-process. Since these steps are energydemanding in some applications the direct use of low-quality water to produce hydrogen may be envisaged. An example is the direct feeding of seawater to Solid Oxide Electrolysers (SOE). SOEs appear more promising than commercial low-temperature electrolysis systems since water steam production integrates the function of preliminary water treatment.
Impact of Impurities on Water Electrolysis: A Review
Feb 2023
Publication
Low temperature water electrolysers such as Proton Exchange Membrane Water Electrolysers (PEMWEs) Alkaline Water Electrolysers (AWEs) and Anion Exchange Membrane Water Electrolysers (AEMWEs) are known to be sensitive to water quality with a range of common impurities impacting performance hydrogen quality and device lifetime. Purification of feed water adds to cost operational complexity and design limitations while failure of purification equipment can lead to degradation of electrolyser materials and components. Increased robustness to impurities will offer a route to longer device lifetimes and reduced operating costs but understanding of the impact of impurities and associated degradation mechanisms is currently limited. This critical review offers for the first time a comprehensive overview of relevant impurities in operating electrolysers and their impact. Impurity sources degradation mechanisms characterisation techniques water purification technologies and mitigation strategies are identified and discussed. The review generalises already reported mechanisms proposes new mechanisms and provides a framework for consideration of operational implications.
Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting
Oct 2012
Publication
Hydrogen is the ideal fuel for the future because it is clean energy efficient and abundant in nature. While various technologies can be used to generate hydrogen only some of them can be considered environmentally friendly. Recently solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies a review of photocatalytic water splitting over titania and non-titania based photocatalysts a discussion of the types of photocatalytic water-splitting approaches and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here the development of highly stable visible–light-active photocatalytic materials and the design of efficient low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.
Development of a Novel Thermochemical Cycle Without Electrolysis Step to Produce Hydrogen
Jan 2025
Publication
This study presents a new three-step Cu-Cl cycle that can operate with heat input without electrolysis. While the sensitivity analyses of the system are performed to evaluate the system performance through the Aspen Plus thermodynamic analyses of the system are performed with energetic and exergetic approaches. The highest exergy destruction among the components in the system was the decomposition reactor with a rate of 50.6%. Furthermore the energy and exergy values for the simulated system to produce 1 mol of hydrogen were determined by calculating the energy requirements of all components in the system. The total energy required for the system to generate 1 mol of hydrogen is calculated to be 997.81 kJ/mol H2. It was found that the component that required the most energy 504.76 kJ/mol H2 in the system was the decomposition reactor. Moreover the overall energy and exergy efficiencies are calculated to be 72.50% and 46.70% respectively.
Waste to Sustainable Biohydrogen Production Via Photo-Fermentation and Biophotolysis - A Systematic Review
Oct 2021
Publication
Considering the environmental challenges humanity faces in the 21st century it is obvious that there is an enormous need for change of the global energy map. Under these circumstances new energy sources and intermediates must be considered as options to limit the greenhouse gases emissions and mitigate climate crisis. Biohydrogen production is one of the most appealing options due to hydrogen’s multiple applications and zero emissions as a fuel to empower a future hydrogen circular economy. In this review article we focus on two methods that are not widely used at industrial scale but have many future possibilities and growth margins: (a) photo-fermentation and (b) bio photolysis. Both methods are light dependent and need photobioreactors to function and produce significant amounts of biohydrogen. Based on an extensive literature search and systemic analysis of the findings presentation of the different reactants operating conditions and biohydrogen productions key factors and effecting parameters were discussed. Temperature pH light intensity and photobioreactor operation and design are some of the most significant factors that define the biohydrogen production rates and yields. Innovative solutions and approaches are presented including biotechnological and genetic engineering modifications to microorganisms as well as combinations of some hybrid biohydrogen producing methods especially dark and photo fermentation. For implementing a biohydrogen circular-economy different wastes were explored as potential feedstocks and overcoming of major bottlenecks that biophotolysis and photo-fermentation face in the transition to a sustainable biohydrogen economy were discussed.
Off-grid Hydrogen Production: Analysing Hydrogen Producton and Supply Costs Considering Country-specifics and Transport to Europe
Jul 2024
Publication
Hydrogen plays a pivotal role in transitioning to CO2-free energy systems yet challenges regarding costs and sourcing persist in supplying Europe with renewable hydrogen. Our paper proposes a simulation-based approach to determine cost-optimal combinations of electrolyser power and renewable peak power for off-grid hydrogen production considering location and energy source dependencies. Key findings include easy estimation of Levelized Costs of Hydrogen (LCOH) and optimal plant sizing based on the regional energy yield and source. Regional investment risks influence the LCOH by 7.9 % per 1 % change of the Weighted Average Cost of Capital. In Central Europe (Austria) hydrogen production costs range from 7.4 €/kg to 8.6 €/kg whereas regions like Chile exhibit cheaper costs at 5.1 €/kg to 6.8 €/kg. Despite the favourable energy yields in regions like Chile or the UAE domestically produced hydrogen can be cost-competitive when location-specific risks and transport costs are taken into account. This underlines the critical role of domestic hydrogen production and cost-effective hydrogen transport for Europe’s future hydrogen supply.
An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation: A Comprehensive Analysis
Mar 2024
Publication
Dayana Nascimento Dari,
Isabelly Silveira Freitas,
Francisco Izaias da Silva Aires,
Rafael Leandro Fernandes Melo,
Kaiany Moreira dos Santos,
Patrick da Silva Sousa,
Paulo Gonçalves de Sousa Junior,
Antônio Luthierre Gama Cavalcante,
Francisco Simão Neto,
Jessica Lopes da Silva,
Érico Carlos de Castro,
Valdilane Santos Alexandre,
Ana M. da S. Lima,
Juliana de França Serpa,
Maria C. M. de Souza and
José C. S. dos Santos
Fermentation is an oxygen-free biological process that produces hydrogen a clean renewable energy source with the potential to power a low-carbon economy. Bibliometric analysis is crucial in academic research to evaluate scientific production identify trends and contributors and map the development of a field providing valuable information to guide researchers and promote scientific innovation. This review provides an advanced bibliometric analysis and a future perspective on fermentation for hydrogen production. By searching WoS we evaluated and refined 62087 articles to 4493 articles. This allowed us to identify the most important journals countries institutions and authors in the field. In addition the ten most cited articles and the dominant research areas were identified. A keyword analysis revealed five research clusters that illustrate where research is progressing. The outlook indicates that a deeper understanding of microbiology and support from energy policy will drive the development of hydrogen from fermentation.
Synergizing Photo-Thermal H2 and Photovoltaics into a Concentrated Sunlight Use
Apr 2020
Publication
Solar hydrogen and electricity are promising high energy-density renewable sources. Although photochemistry or photovoltaics are attractive routes special challenge arises in sunlight conversion efficiency. To improve efficiency various semiconductor materials have been proposed with selective sunlight absorption. Here we reported a hybrid system synergizing photo-thermochemical hydrogen and photovoltaics harvesting full-spectrum sunlight in a cascade manner. A simple suspension of Au-TiO2 in water/methanol serves as a spectrum selector absorbing ultraviolet-visible and infrared energy for rapid photo-thermochemical hydrogen production. The transmitted visible and near-infrared energy fits the photovoltaic bandgap and retains the high efficiency of a commercial photovoltaic cell under different solar concentration values. The experimental design achieved an overall efficiency of 4.2% under 12 suns solar concentration. Furthermore the results demonstrated a reduced energy loss in full-spectrum energy conversion into hydrogen and electricity. Such simple integration of photo-thermochemical hydrogen and photovoltaics would create a pathway toward cascading use of sunlight energy.
Techno-economic Analysis of Green Hydrogen Production and Electric Vehicle Charging Using Redundant Energy on a Solar Photovoltaic Mini-grid
Nov 2024
Publication
The trajectory of the world’s energy use has moved towards the use of renewable energy to increase energy access. Solar energy’s pace of growth as a result of its low cost has resulted in it being used to generate electricity for areas that do not have access to grid electricity. Thus solar photovoltaic mini-grid systems have been deployed in several areas. Over time it has been found that these systems generate a significant amount of redundant energy which translates to low profitability for the mini-grid operators as only a fraction of the system’s capacity is used. This study seeks to investigate the economic feasibility of using this redundant energy for green hydrogen production and electric vehicle charging. The results revealed that both the green hydrogen production and electric vehicle charging are economically viable. Net Present Value Internal Rate of Return and Simple Payback Period obtained for green hydrogen production are $20000 24.6% 9 years while those of the electric vehicle charging are $109625 28.41% 4 years respectively. Over the projects’ lifetime levelised cost of hydrogen and levelised cost of energy for charging are $6.88/kg and $0.23/kWh respectively. Furthermore a sensitivity analysis revealed that the levelised costs for both projects are most sensitive to the plant capacity factor and capital expenditure. The study also shows that the wasted energy of the PV mini-grid could be reduced from as high as 69.95% to nearly 0%. This research underscores the potential of other clean energy technologies to reduce the wasted energy on existing PV systems whiles improving the economic state of mini-grid communities.
Baseload Hydrogen Supply from an Off-grid Solar PV-Wind-Power-Battery-Water Electrolyzer Plant
Feb 2025
Publication
Green hydrogen will play a key role in the transition to a carbon-neutral energy system. This study addresses the challenge of supplying baseload green hydrogen through an integrated off-grid alkaline water electrolyzer (AWE) plant wind and solar photovoltaic (PV) power a battery energy storage system (BESS) and a hydrogen storage system based on salt and rock cavern geologies. The capacities of the components and the hydrogen storage size are optimized simultaneously with the control of the AWE plant to minimize the levelized cost of hydrogen (LCOH2) of the gas supplied. The operation of the system is simulated over 30 years with a 15 min time resolution considering degradation operating expenses and component replacements. Power generation data collected from a wind farm and a solar PV installation both located in southeastern Finland are used for system simulation. A sensitivity analysis exploring different hydrogen demand rates discount rates and installation years is conducted for both systems considering rock and salt caverns providing the optimal configuration for each case. It is found that for the price scenario of the year 2025 for a combined 100 MW AWE and compressor the optimal hydrogen demand rate is 12 kg/min with an LCOH2 of 3.14 e/kg and 2.77 e/kg in systems including rock and salt caverns respectively.
Agrivoltaics, Opportunities for Hydrogen Generation, and Market Developments
Feb 2025
Publication
To achieve deep decarbonization renewable energy generation must be substantially increased. The technologies with the lowest levelized cost of electricity (LCOE) are land-based photovoltaics (PVs) and wind energy. Agri-PVs offer the potential for dual land use combining energy generation with agricultural activities. However the costs of agri-PVs are higher than those of ground-mounted PV. To enhance the competitiveness of agri-PV we investigate the synergies between agri-PVs and hydrogen electrolysis through process simulation. Additionally we analyse current technological developments in agri-PVs based on a market analysis of start-up companies. Our results indicate that the levelized cost of hydrogen (LCOH) can be comparable for agri-PVs and ground-mounted PVs due to the somewhat smoother electricity generation for the same installed capacity. The market analysis reveals the emergence of a technology ecosystem that integrates agri-PVs with next-generation agricultural technologies such as sensors robotics and artificial intelligence (AI) agents along with localized electricity generation forecasting. The integrated agri-PV and hydrogen generation system has significant global scaling potential for renewable energy generation. Furthermore it positively impacts local economies and energy resilience may reduce water scarcity in agriculture and leverages advancements in AI robotics PV and hydrogen generation technologies.
A Comparative Techno-economic Assessment Between Solar-based Hydrogen Production by Methane Pyrolysis and Water Electrolysis Methods
Jan 2025
Publication
The transition towards clean and economically viable hydrogen production is crucial for ensuring energy sustainability and mitigating climate change. This transition can be effectively facilitated by using renewable energy sources and advanced hydrogen production methods. Methane pyrolysis and water electrolysis emerge as crucial techniques for achieving hydrogen production with minimal carbon intensity. Recognizing the unique opportunity presented by solar energy for both processes this study presents a comparative techno-economic analysis between solar-based molten salt methane pyrolysis (SMSMP) and solar-based solid oxide electrolyzer cell (SSOEC). This study offers a guideline for selecting SMSMP vs SSOEC for cities across theworld. In particular a comprehensive case study including five cities worldwide—San Antonio Edmonton Auckland Seville and Lyon—is conducted utilizing their dynamic solar data and localized prices of methane and electricity to provide a realistic comparison. The results indicate the superior economic feasibility of SMSMP across all case studies. Among different case studies San Antonio and Auckland have the lowest hydrogen costs for SMSMP (2.31 $/kgH2) and SSOEC (5.19 $/kgH2) respectively. It was also concluded that SMSMP is preferred over SSOEC in average to ideal solar conditions given its full dependency on solar thermal energy. However the SSOEC has the potential to achieve better economic feasibility by incorporating clean hydrogen tax incentives and reducing the costs associated with renewable energy infrastructure in the future.
Comprehensive Review of Carbon Capture and Storage Integration in Hydrogen Production: Opportunities, Challenges, and Future Perspectives
Oct 2024
Publication
The growing emphasis on renewable energy highlights hydrogen’s potential as a clean energy carrier. However traditional hydrogen production methods contribute significantly to carbon emissions. This review examines the integration of carbon capture and storage (CCS) technologies with hydrogen production processes focusing on their ability to mitigate carbon emissions. It evaluates various hydrogen production techniques including steam methane reforming electrolysis and biomass gasification and discusses how CCS can enhance environmental sustainability. Key challenges such as economic technical and regulatory obstacles are analyzed. Case studies and future trends offer insights into the feasibility of CCS–hydrogen integration providing pathways for reducing greenhouse gases and facilitating a clean energy transition.
Review on Techno-economics of Hydrogen Production Using Current and Emerging Processes: Status and Perspectives
Feb 2024
Publication
This review presents a broad exploration of the techno economic evaluation of different technologies utilized in the production of hydrogen from both renewable and non-renewable sources. These encompass methods ranging from extracting hydrogen from fossil fuels or biomass to employing microbial processes electrolysis of water and various thermochemical cycles. A rigorous techno-economic evaluation of hydrogen production technologies can provide a critical cost comparison for future resource allocation priorities and trajectory. This evaluation will have a great impact on future hydrogen production projects and the development of new approaches to reduce overall production costs and make it a cheaper fuel. Different methods of hydrogen production exhibit varying efficiencies and costs: fast pyrolysis can yield up to 45% hydrogen at a cost range of $1.25 to $2.20 per kilogram while gasification operating at temperatures exceeding 750°C faces challenges such as limited small-scale coal production and issues with tar formation in biomass. Steam methane reforming which constitutes 48% of hydrogen output experiences cost fluctuations depending on scale whereas auto-thermal reforming offers higher efficiency albeit at increased costs. Chemical looping shows promise in emissions reduction but encounters economic hurdles and sorptionenhanced reforming achieves over 90% hydrogen but requires CO2 storage. Renewable liquid reforming proves effective and economically viable. Additionally electrolysis methods like PEM aim for costs below $2.30 per kilogram while dark fermentation though cost-effective grapples with efficiency challenges. Overcoming technical economic barriers and managing electricity costs remains crucial for optimizing hydrogen production in a low-carbon future necessitating ongoing research and development efforts.
Elevating Sustainability with a Multi-Renewable Hydrogen Generation System Empowered by Machine Learning and Multi-objective Optimisation
Apr 2024
Publication
The global energy landscape is rapidly shifting toward cleaner lower-carbon electricity generation necessitating a transition to alternate energy sources. Hydrogen particularly green hydrogen looks to be a significant solution for facilitating this transformation as it is produced by water electrolysis with renewable energy sources such as solar irradiations wind speed and biomass residuals. Traditional energy systems are costly and produce energy slowly due to unpredictability in resource supply. To address this challenge this work provides a novel technique that integrates a multi-renewable energy system using multi objective optimization algorithm to meets the machine learning-based forecasted load model. Several forecasting models including Autoregressive Integrated Moving Average(ARIMA) Random Forest and Long Short-Term Memory Recurrent Neural Network (LSTMRNN) are assessed for develop the statistical metrics values such as RMSE MAE and MAPE. The selected Non-Sorting Moth Flame Optimization (NSMFO) algorithm demonstrates technological prowess in efficiently achieving global optimization particularly when handling multiple objective functions. This integrated method shows enormous promise in technological economic and environmental terms emphasizing its ability to promote energy sustainability targets.
Model for Hydrogen Production Scheduling Optimisation
Feb 2024
Publication
This scientific article presents a developed model for optimising the scheduling of hydrogen production processes addressing the growing demand for efficient and sustainable energy sources. The study focuses on the integration of advanced scheduling techniques to improve the overall performance of the hydrogen electrolyser. The proposed model leverages constraint programming and satisfiability (CP-SAT) techniques to systematically analyse complex production schedules considering factors such as production unit capacities resource availability and energy costs. By incorporating real-world constraints such as fluctuating energy prices and the availability of renewable energy the optimisation model aims to improve overall operational efficiency and reduce production costs. The CP-SAT was applied to achieve more efficient control of the electrolysis process. The optimisation of the scheduling task was set for a 24 h time period with time resolutions of 1 h and 15 min. The performance of the proposed CP-SAT model in this study was then compared with the Monte Carlo Tree Search (MCTS)-based model (developed in our previous work). The CP-SAT was proven to perform better but has several limitations. The model response to the input parameter change has been analysed.
A New Integrated System for Carbon Capture and Clean Hydrogen Production for Sustainable Societal Utilization
Oct 2024
Publication
Hydrogen production and carbon dioxide removal are considered two of the critical pieces to achieve ultimate sustainability target. This study proposes and investigates a new variation of potassium hydroxide thermochemical cycle in order to combine hydrogen production and carbon dioxide removal synergistically. An alkali metal redox thermochemical cycle developed where the potassium hydroxide is considered by using a nonequilibrium reaction. Also the multigeneration options are explored by using two stage steam Rankine cycle multi-effect distillation desalination Li-Br absorption chiller which are integrated with potassium hydroxide thermochemical cycle for hydrogen production carbon capture power generation water desalination and cooling purposes. A comparative assessment under different scenarios is carried out. The energy and exergy efficiencies of the hydrogen production thermochemical cycle are 44.2% and 67.66% when the hydrogen generation reaction is carried out at 180°C and the separation reactor temperature set at 400°C. Among the multigeneration scenarios a trigeneration option of hydrogen power and water indicates the highest energy efficiency as 66.02%.
Carbon Dioxide Emission in Hydrogen Production Technology from Coke Oven Gas with Life Cycle Approach
Oct 2016
Publication
The analysis of Carbon Footprint (CF) for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas emission indicators of carbon dioxide (CF) were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant the process of coking coal purification and reforming of coke oven gas carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ). The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA).
Environmental and Material Criticality Assessment of Hydrogen Production via Anion Exchange Membrane Electrolysis
Oct 2023
Publication
The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work prospective life cycle assessment and criticality assessment are applied first to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and second to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view the catalyst spraying process heavily dominates the ozone depletion impact category while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded subject to the expected technical progress for this technology.
An Analytical Model for the Electrolyser Performance Derived from Materials Parameters
Oct 2017
Publication
Hydrogen is seen as a key element for the transition from a fossil fuel based economy to a renewable sustainable economy. Hydrogen can be used either directly as an energy carrier or as a feedstock for the reduction of CO2 to synthetic hydrocarbons. Hydrogen can be produced by electrolysis decomposing water in oxygen and hydrogen. This paper presents an overview of the three major electrolysis technologies: acidic (PEM) alkaline (AEL) and solid oxide electrolysis (SOEC). An updated list of existing electrolysers and commercial providers is provided. Most interestingly the specific prices of commercial devices are also given when available. Despite tremendous development of the PEM technology in the past decades the largest and most efficient electrolysers are still alkaline. Thus this technology is expected to play a key role in the transition to the hydrogen society. A detailed description of the components in an alkaline electrolyser and an analytical model of the process are provided. The analytical model allows investigating the influence of the different operating parameters on the efficiency. Specifically the effect of temperature on the electrolyte conductivity—and thus on the efficiency—is analyzed. It is found that in the typical range of operating temperatures for alkaline electrolysers of 65˚C - 220˚C the efficiency varies by up to 3.5 percentage points increasing from 80% to 83.5% at 65˚C and 220˚C respectively.
Cleaner Energy Solutions using Wind Energy and Hydrogen Production in Agriculture
Feb 2025
Publication
This study evaluates the integration of wind energy into greenhouse agriculture in the Safi region a major agricultural area in Morocco. As part of cleaner energy systems five wind turbines were analyzed to determine their performance. After performing a statistical analysis using the Weibull distribution with two parameters the results showed that the VESTAS V82- 0.9/1.65MW – 70m turbine was the most efficient. It achieved a capacity factor of 41.72% an annual energy production of 3 326.17 MWh and the ability to supply electricity to 6 960 m² of agricultural greenhouses. Environmental benefits include a significant reduction in carbon dioxide emissions. Economically the results vary with a payback period of less than 5 years for the VESTAS turbine but a longer period of 10.49 years for the Norwin – 30m turbine. To address fluctuations in wind energy caused by daily wind speed variations this innovative study explores combining wind power with hydrogen production. The results indicate that the Safi region has the potential to produce between 25 188.76 kg and 44 875.25 kg of hydrogen annually depending on the turbine used. Additionally this approach could reduce annual CO2 emissions by up to 2 606 609 kg. These findings highlight a promising innovation in cleaner energy systems to enhance agricultural sustainability through renewable energy solutions.
Adaptive Sliding Mode Control of an Interleaved Buck Converter–Proton Exchange Membrane Electrolyzer for a Green Hydrogen Production System
Mar 2025
Publication
This paper presents an advanced Adaptive Sliding Mode Control (ASMC) strategy specifically developed for a hydrogen production system based on a Proton Exchange Membrane electrolyzer (PEM electrolyzer). This work utilized a static model of the PEM electrolyzer characterized by its V-I electrical characteristic which was approximated by a linear equation. The ASMC was designed to estimate the coefficients of this equation which are essential for designing an efficient controller. The primary objective of the proposed control strategy is to ensure the overall stability of the integrated system comprising both an interleaved buck converter (IBC) and PEM electrolyzer. The control framework aims to maintain the electrolyzer voltage at its reference value despite the unknown coefficients while ensuring equal current distribution among the three parallel legs of the IBC. The effectiveness of the proposed approach was demonstrated through numerical simulations in MATLAB-SIMULINK and was validated by the experimental results. The results showed that the proposed ASMC achieved a voltage tracking error of less than 2% and a current distribution imbalance of only 1.5%. Furthermore the controller exhibited strong robustness to parameter variations effectively handling fluctuations in the electrolyzer’s ohmic resistance (Rohm) (from ±28.75% to ±40.35%) and in the reversible voltage (Erev) (from ±28.67% to ±40.19%) highlighting its precision and reliability in real-world applications.
Hydrogen Production Model: A Computational Approach to Optimise Cost Reduction Strategies, Environmental Impact, and Financial Viability
Jul 2025
Publication
This study presents a comprehensive techno-economic and environmental evaluation of hydrogen production from organic waste feedstocks in Bangladesh utilizing an integrated approach through advanced modelling tools. The research combines H2A (Hydrogen Production Cost Analysis) HDSAM (Hydrogen Delivery Scenario Analysis Model) and H2FAST (Hydrogen Financial Assessment Tool) to assess the feasibility of large-scale hydrogen production distribution and storage. H2A is employed to analyze hydrogen production costs considering various feedstocks and production methods while HDSAM evaluates the delivery pathways and logistics of liquid and gaseous hydrogen. H2FAST is used to perform detailed financial modelling focusing on investment risks profitability and financial metrics of hydrogen projects. This integrated methodology provides a comprehensive analysis of the hydrogen value chain addressing key factors such as production costs logistics and financial feasibility. Main results of the study indicate that hydrogen production costs can range from $2.16/kg to $2.18/kg depending on feedstock efficiency and plant utilization. Financial assessments show that larger-scale hydrogen stations (4000 kg/day) benefit from economies of scale with hydrogen costs dropping to approximately $8.51/kg compared to $12.75/kg for smaller stations (400 kg/day). The study concludes incorporates region-specific data for Bangladesh addressing local challenges such as infrastructure limitations financial constraints and energy demands offering a tailored analysis that can inform future hydrogen projects in Bangladesh and similar developing economies.
Green Hydrogen Production in Photoelectrochemical Artificial-leaf Systems with Different Tandem Solar Cells: An Environmental and Economic Assessment of Industrial-scale Production in China
Aug 2025
Publication
Different photoelectrochemical (PEC) artificial-leaf systems have been proposed for green hydrogen production. However their sustainability is not well understood in comparison to conventional hydrogen technologies. To fill this gap this study estimates cradle-to-grave life cycle environmental impacts and costs of PEC hydrogen production in different provinces in China using diverse tandem solar cells: Ge/GaAs/GaInP (Ge-PEC) GaAs/ GaInAs/GaInP (GaAs-PEC) and perovskite/silicon (P-PEC). These systems are benchmarked against conventional hydrogen production technologies − coal gasification (CG) and steam methane reforming (SMR) − across 18 environmental categories life cycle costs and levelised cost of hydrogen (LCOH). P-PEC emerges as the best options with 36–95 % lower impacts than Ge-PEC and GaAs-PEC across the categories including the climate change impact (0.38–0.52 t CO2 eq./t H2) which is 77–79 % lower. Economically P-PEC shows 81–84 % lower LCOH (2.51–3.81 k$/t). Compared to SMR and CG P-PEC reduces the impacts by 23–98 % saving 3.67–38.5 Mt of CO2 eq./yr. While its LCOH is 5 % higher than that of conventional hydrogen it could be economically competitive with both SMR and CG at 10 % higher solar-to-hydrogen efficiency and 25 % lower operating costs. In contrast Ge-PEC and GaAs-PEC while achieving much lower (81–91 %) climate change and some other impacts than the conventional technologies face significant economic challenges. Their LCOH (21.51–32.82 k$/t for Ge-PEC and 16.96–25.89 k$/t for GaAs-PEC) is 7–9 times higher than that of the conventional hydrogen due to the high solar cell costs. Therefore despite their environmental benefits these technologies require substantial cost reductions to become economically viable.
Dynamic Modelling of Methanol Steam Reforming to Hydrogen in a Packed Bed Reactor for Shipboard Fuel Cells
Feb 2025
Publication
Hydrogen economy is spreading across the maritime sector in response to increasingly stringent regulations for shipping emissions. The challenging on-board hydrogen logistics are often mitigated with hydrogen carriers such as methanol. Research on methanol reforming to hydrogen for fuel cell feed is conducted mostly in steady state overlooking dynamic reactor operation and its effects on the power production system. Forced reactor operations induce fluctuations of CO content in the reformate potentially harmful to the PEM fuel cell and drops in methanol conversion causing inefficient operation. In present research simulations with a physical 2D unsteady model of a packed bed methanol steam reforming reactor resulted in methanol conversion drop durations of up to a minute. Additionally temporary increases of CO content up to 112% were observed. Throughput ramp ups most notably impact the conversion while ramp downs negatively affect selectivity. The investigation on reactor geometry concludes that larger tube diameters increase transient time and CO spikes while they decrease with reactor length. Amplified unsteady effects are also observed with larger changes in input process variables. The results imply that heat transfer rate to the reactor are most often the detrimental factor for transient effects and durations in practice. Following this work inclusion of realistic heating methods is recommended instead of uniform tube temperatures used in present simulations. Heating system characteristics are necessary for realistic evaluation of the methanol reformer constraint on fuel cell feed demand in fully integrated systems.
Competitiveness of Green and Yellow Hydrogen: A Project-level Analysis
Feb 2025
Publication
With the growing global focus on hydrogen as a key solution for achieving decarbonization understanding the most cost-effective and environmentally sustainable production methods is crucial. The objective of this study is to evaluate the economic and environmental performance of different renewable energy sources for hydrogen production while also considering the impact of geographic location system sizing and technological efficiency. This study compares the production of green hydrogen powered by onshorewind offshore-wind and solar PV with that of yellow hydrogen (grid-based hydrogen) in terms of cost and environmental impact for a large sample of publicly announced green hydrogen projects in Europe. Using geographic renewable energy data project-specific details and prevailing technological standards we derive each country’s weighted average cost of capital (WACC) to calculate market-based levelized cost of hydrogen. We find onshore-wind projects to have the lowest average levelized cost of green hydrogen followed by offshore-wind and then by solar PV . The costs for yellow hydrogen depend on the price of electricity. Excluding 2022 yellow hydrogen had lower mean costs than solar PV but higher costs than both types of wind. The environmental impact assessment finds significant decarbonization potential for green hydrogen particularly in regions with substantial renewable resources and carbon-intensive energy mixes. The study aggregates the project data at the country level then clusters the analyzed countries based on economic and environmental metrics to derive specific hydrogen strategies. It concludes that substantial governmental support is essential for the large-scale integration of green hydrogen into the energy system to achieve meaningful decarbonization.
Mining Nontraditional Water Sources for a Distributed Hydrogen Economy
Jul 2022
Publication
Securing decarbonized economies for energy and commodities will requireabundant and widely available green H2. Ubiquitous wastewaters and nontraditional watersources could potentially feed water electrolyzers to produce this green hydrogen withoutcompeting with drinking water sources. Herein we show that the energy and costs of treatingnontraditional water sources such as municipal wastewater industrial and resource extractionwastewater and seawater are negligible with respect to those for water electrolysis. We alsoillustrate that the potential hydrogen energy that could be mined from these sources is vast.Based on these findings we evaluate the implications of small-scale distributed waterelectrolysis using disperse nontraditional water sources. Techno-economic analysis and lifecycle analysis reveal that the significant contribution of H2 transportation to costs and CO2emissions results in an optimal levelized cost of hydrogen at small- to moderate-scale waterelectrolyzer size. The implications of utilizing nontraditional water sources and decentralizedor stranded renewable energy for distributed water electrolysis are highlighted for severalhydrogen energy storage and chemical feedstock applications. Finally we discuss challengesand opportunities for mining H2 from nontraditional water sources to achieve resilient and sustainable economies for water andenergy.
Solid Oxide Electrolyzers Process Integration: A Comprehensive Review
Aug 2025
Publication
Solid oxide electrolysis (SOEL) has emerged as a promising technology for efficient hydrogen production. Its main advantages lie in the high operating temperatures which enhance thermodynamic efficiency and in the ability to supply part of the required energy in the form of heat. Nevertheless improving the long-term durability of stack materials remains a key challenge. Thermal energy can be supplied by dedicated integration with different industrial processes where the main challenge lies in the elevated stack operating temperature (700–900 ◦C). This review provides a comprehensive analysis of the integration of solid oxide electrolysis cells (SOECs) into different industrial applications. Main processes cover methanol production methane production Power-to-Hydrogen systems or the use of reversible solid oxide electrolysis cell (rSOEC) stacks that can operate in both electrolysis and fuel cell mode. The potential of co-electrolysis to increase process flexibility and broaden application areas is also analyzed. The aim is to provide a comprehensive analysis of the integration strategies identify the main technical and economic challenges and highlight recent developments and future trends in the field. A detailed comparison assessment of the different processes is being discussed in terms of electrical and thermal efficiencies and operating parameters as well as Key Performance Indicators (KPIs) for each process. Technical-economic challenges that are currently a barrier to their implementation in industry are also analyzed.
Wastewater as a Resource: Evaluating Light Dependent and Light Independent Methods, Challenges, and Future Directions for Sustainable Hydrogen Generation
Aug 2025
Publication
The increasing need for environmentally friendly energy sources has contributed to the development of innovative technologies that also resolve environmental issues. Hydrogen can be produced in a number of ways including using fossil fuels biomass and renewable energy sources like wind and sun. Using renewable energy for water-based production is the most sustainable method of producing hydrogen. However since fresh water is scarce the main way to address this issue is to use wastewater. Although wastewater is frequently seen as an issue it could additionally be seen as a valuable source of energy as it has the potential to produce bio-hydrogen. The current review emphasizes the key conclusion of studies examining the viability of the generation of hydrogen from wastewater by applying a variety of technologies in order to investigate each method’s potential which effectively removes pollutants from wastewater addressing both environmental challenges of wastewater treatment as well as clean energy production. Hydrogen production from wastewater using sustainable lowenergy methods enhances energy recovery in treatment plants and promotes a circular economy. This lowcarbon hydrogen supports global decarbonization and simultaneously achieving pollutant degradation with advanced systems offers dual benefits over traditional wastewater treatment methods. The essential details of 7 emerging technologies their working mechanisms affecting parameters work advances advantages and disadvantages and their future prospects are taken into consideration in 2 distinct classes- light-independent and light-dependent technologies.
Driving Sustainable Energy Co-Production: Gas Transfer and Pressure Dynamics Regulating Hydrogen and Carboxylic Acid Generation in Anaerobic Systems
Jul 2025
Publication
To achieve energy transition hydrogen and carboxylic acids have attracted much attention due to their cleanliness and renewability. Anaerobic fermentation technology is an effective combination of waste biomass resource utilization and renewable energy development. Therefore the utilization of anaerobic fermentation technology is expected to achieve efficient co-production of hydrogen and carboxylic acids. However this process is fundamentally affected by gas–liquid mass transfer kinetics bubble behaviors and system partial pressure. Moreover the related studies are few and unfocused and no systematic research has been developed yet. This review systematically summarizes and discusses the basic mathematical models used for gas–liquid mass transfer kinetics the relationship between gas solubility and mass transfer and the liquid-phase product composition. The review analyzes the roles of the headspace gas composition and partial pressure of the reaction system in regulating co-production. Additionally we discuss strategies to optimize the metabolic pathways by modulating the gas composition and partial pressure. Finally the feasibility of and prospects for the realization of hydrogen and carboxylic acid co-production in anaerobic fermentation systems are outlined. By exploring information related to gas mass transfer and system pressure this review will surely provide an important reference for promoting cleaner production of sustainable energy.
Life-cycle Assessment and Cost Analysis of Hydrogen Production via Aluminium-seawater Reactions
Jun 2025
Publication
Presented is an evaluation of the carbon footprint and costs associated with hydrogen production via the aluminum-water reaction (AWR) identifying an optimized scenario that achieves 1.45 kgCO2 equiv per kg of hydrogen produced. U.S.-based data are used to compare results with conventional production methods and to assess hydrogen use in fuel-cell passenger vehicles. In the optimized scenario major contributors include the use of recycled aluminum (0.38 kgCO2 equiv) aluminum processing (0.45 kgCO2 equiv) and alloy activator recovery (0.57 kgCO2 equiv). A cost analysis estimates hydrogen production at $9.2/kg when using scrap aluminum alloy recovery and recycling thermal energy aligning with current green hydrogen prices. Reselling reaction byproducts such as boehmite could generate revenue 5.6 times greater than input costs enhancing economic feasibility. The cradle-to-grave assessment suggests that aluminum fuel as an energy carrier for hydrogen distribution and fuel cell vehicle applications offers a low-emission and economically viable pathway for clean energy deployment.
No more items...