Production & Supply Chain
Toward More Efficient Large-Scale Green Hydrogen Systems via Waste Heat Recovery and ORC
May 2025
Publication
This research models a 20 MW PEM hydrogen plant. PEM units operate in the 60 to 80 ◦C range based on their location and size. This study aims to recover the waste heat from PEM modules to enhance the efficiency of the plant. In order to recover the heat two systems are implemented: (a) recovering the waste heat from each PEM module; (b) recovering the heat from hot water to produce electricity utilizing an organic refrigerant cycle (ORC). The model is made by ASPEN® V14. After modeling the plant and utilizing the ORC the module is optimized using Python to maximize the electricity produced by the turbine therefore enhancing the efficiency. The system is a closed-loop cycle operating at 25 ◦C and ambient pressure. The 20 MW PEM electrolyzer plant produces 363 kg/hr of hydrogen and 2877 kg/hr of oxygen. Based on the higher heating value of hydrogen the plant produces 14302.2 kWh of hydrogen energy equivalents. The ORC is maximized by increasing the electricity output from the turbine and reducing the pump work while maintaining energy conservation and mass balance. The results show that the electricity power output reaches 555.88 kW and the pump power reaches 23.47 kW.
Techno-economic Assessment of Hydrogen Production: Comparative Analysis of Electrolyser Technologies in a Hybrid PV/Wind System
Jun 2025
Publication
Green hydrogen is critical for achieving net-zero emissions with water electrolysis offering a CO2-free solution. This study provides a comprehensive comparative financial and economic assessment of a hybrid PV/wind hydrogen production system using three types of electrolysers including Alkaline Electrolyser (AEL) Proton Exchange Membrane Electrolyser (PEMEL) and Solid Oxide Electrolyser (SOEL). Key performance metrics such as net present value (NPV) Internal Rate of Return (IRR) revenues Earnings Before Interest Tax Depreciation and Amortization (EBITDA) Earning Before Taxes (EBT) Debt Service Coverage Ratio (DSCR) and levelized cost of Hydrogen (LCOH) are evaluated to identify the most cost-effective option. The findings reveal that AEL is the most economical solution achieving a higher NPV (503374 k€) and IRR (16.94 % for project IRR) though PEMEL and SOEL remain competitive. Other metrics such as DSCR show that the hydrogen project generates 30 % more cash flow than is required to cover its debt service. Additionally the results of the LCOH analysis demonstrate that a hybrid plant consisting of 10 % PV and 90 % wind is more cost-effective in the studied region than both solar-based or wind-based hydrogen production plants. AEL and PEMEL are approximately 7–6 €/kg less expensive than SOEL but this gap is expected to be narrowed by 2030. The hybrid renewable energy project reduces CO2 emissions by 6786.6 Mt over its lifetime. These findings guide policymakers and investors toward scalable cost-effective green hydrogen deployment emphasizing the synergy of hybrid renewables and mature electrolysis technologies.
Dual Pathways for Refinery Off-gas Processing: Comparative Analysis of Steam Reforming and Co-electrolysis
Aug 2025
Publication
In an effort to bridge the gap between academic research and industrial application this study investigates the integration potential of steam methane reforming and Co-electrolysis for the efficient conversion of refinery offgases into high-purity syngas. Experimental work was conducted under conditions representative of industrial environments using platinum- and nickel-based catalysts in steam reforming to assess methane conversion and H2 /CO ratio at varying temperatures and gas hourly space velocities (GHSV). Co-electrolysis was evaluated in solid oxide electrolysis cells (SOECs) across a range of gas compositions (H2O/CO2 /H2 /CO) including pure CO2 electrolysis as a strategy for pre-electrolysis hydrogen removal. Electrochemical performance was analyzed using impedance spectroscopy distribution of relaxation times (DRT) and current–voltage characterization. Results confirm the superior stability and performance of the Pt catalyst under high-throughput conditions while Ni-based systems were more sensitive to operational fluctuations. In the SOEC increased H2O content accelerated reaction kinetics whereas CO2 concentration governed polarization resistance. To enable optimal SOEC operation the addition of steam downstream of the reformer is proposed as a means of adjusting the reformate composition. The findings demonstrate that tuning reforming and electrolysis conditions in tandem offers a promising route for sustainable syngas production using renewable electricity. This work establishes a foundation for further development of integrated thermo-electrochemical systems tailored to industrial gas streams.
Green Hydrogen Production from Biogas or Landfill Gas by Steam Reforming or Dry Reforming: Specific Production and Energy Requirements
May 2025
Publication
Biogas is a crucial renewable energy source for green hydrogen (H2) production reducing greenhouse gas emissions and serving as a carbon-free energy carrier with higher specific energy than traditional fuels. Currently methane reforming dominates H2 production to meet growing global demand with biogas/landfill gas (LFG) reform offering a promising alternative. This study provides a comprehensive simulation-based evaluation of Steam Methane Reforming (SMR) and Dry Methane Reforming (DMR) of biogas/LFG using Aspen Plus. Simulations were conducted under varying operating conditions including steam-to-carbon (S/C) for SMR and steam-to-carbon monoxide (S/CO) ratios for DMR reforming temperatures pressures and LFG compositions to optimize H2 yield and process efficiency. The comparative study showed that SMR attains higher specific H2 yields (0.14–0.19 kgH2/Nm3 ) with specific energy consumption between 0.048 and 0.075 MWh/kg of H2 especially at increased S/C ratios. DMR produces less H2 than SMR (0.104–0.136 kg H2/Nm3 ) and requires higher energy inputs (0.072–0.079 MWh/kg H2) making it less efficient. Both processes require an additional 1.4–2.1 Nm3 of biogas/LFG per Nm3 of feed for energy. These findings provide key insights for improving biogas-based H2 production for sustainable energy with future work focusing on techno–economic and environmental assessments to evaluate its feasibility scalability and industrial application.
Enhancing Hydrogen Gas Production in Electrolysis Cells with Ammonium Chloride and Solar PV Integration
Feb 2025
Publication
In this study the electrolysis of water by using ammonium chloride (NH4Cl) as an electrolyte was investigated for the production of hydrogen gas. The assembled electrochemical cell consists mainly of twenty-one stainless-steel electrodes and a direct current from a battery ammonium chloride solution. In the electrolysis process hydrogen and oxygen are developed at the same time and collected as a mixture to be used as a fuel. This study explores a technic regarding the matching of oxyhydrogen (HHO) electrolyzers with photovoltaic (PV) systems to make HHO gas. The primary objective of the present research is to enable the electrolyzer to operate independently of other energy origins functioning as a complete unit powered solely by PV. Moreover the impact of using PWM on cell operation was investigated. The experimental data was collected at various time intervals NH4Cl concentrations. Additionally the hydrogen unit consists of two cells with a shared positive pole fixed between them. Some undesirable anodic reaction affects the efficiency of hydrogen gas production because of the corrosion of anode to ferrous hydroxide (Fe(OH)2). Polyphosphate Inhibitor was used to minimize the corrosion reaction of anode and keep the efficiency of hydrogen gas flow. The optimal concentration of 3M for ammonium chloride was identified balancing a gas flow rate of 772 ml/min with minimal anode corrosion. Without PWM conversion efficiency ranges between 93% and 96%. Therefore PWM increased conversion efficiency by approximately 5% leading to a corresponding increase in hydrogen gas production.
Comparative Techno-environmental Analysis of Grey, Blue, Green/Yellow and Pale-blue Hydrogen Production
Mar 2025
Publication
Hydrogen holds immense potential to assist in the transition from fossil fuels to sustainable energy sources but its environmental impact depends on how it is produced. This study introduces the pale-blue hydrogen production method which is a hybrid approach utilizing both carbon capture and bioenergy inputs. Comparative life cycle analysis is shown for grey blue green and pale-blue hydrogen using cumulative energy demand carbon footprint (CF) and water footprint. Additionally the integration of solar-powered production methods (ground-based photovoltaic and floating photovoltaic (FPV) systems) is examined. The results showed blue hydrogen [steam methane reforming (SMR) + 56% carbon capture storage (CCS)] was 72% less green hydrogen gas membrane (GM) 75% less blue hydrogen [SMR+90%CCS] 88% less and green hydrogen FPV have 90% less CF compared to grey hydrogen. Pale-blue hydrogen [50%B-50%G] blue hydrogen (GM + plasma reactor(PR)) PV and blue hydrogen (GM + PR) FPV offset 26 48 and 52 times the emissions of grey hydrogen.
Characterization of Hydrogen-in-Oxygen Changes in Alkaline Electrolysis Hydrogen Production System and Analysis of Influencing Factors
Aug 2025
Publication
Industrial alkaline water electrolysis systems face challenges in maintaining hydrogenin-oxygen impurity within safe limits under fluctuating operating conditions. This study aims to characterize the dynamic response of hydrogen-in-oxygen concentration in an industrial 10 kW alkaline water electrolysis test platform (2 Nm3/h hydrogen output at 1.6 MPa and 90 ◦C) and to identify how operating parameters influence hydrogen-inoxygen behavior. We systematically varied the cell current system pressure and electrolyte flow rate while monitoring real-time hydrogen-in-oxygen levels. The results show that hydrogen-in-oxygen exhibits significant inertia and delay: during startup hydrogen-inoxygen remained below the 2% safety threshold and stabilized at 0.9% at full load whereas a step decrease to 60% load caused hydrogen-in-oxygen to rise to 1.6%. Furthermore reducing the pressure from 1.4 to 1.0 MPa lowered the hydrogen-in-oxygen concentration by up to 15% and halving the alkaline flow rate suppressed hydrogen-in-oxygen by over 20% compared to constant conditions. These findings provide new quantitative insights into hydrogen-in-oxygen dynamics and offer a basis for optimizing control strategies to keep gas purity within safe limits in industrial-scale alkaline water electrolysis systems.
Gasification Processes of Portuguese Biomass: Theoretical Analysis of Hydrogen Production Potential
Aug 2025
Publication
Portugal’s commitment to carbon neutrality by 2050 has intensified the search for renewable energy alternatives with biomass gasification emerging as a promising pathway for hydrogen production. This comprehensive review analyzes the potential of 39 Portuguese biomass species for gasification processes based on extensive laboratory characterization data including proximate analysis ultimate analysis heating values and metal content. The studied biomasses encompass woody shrubland species (matos arbustivos lenhosos) forest residues and energy crops representative of Portugal’s diverse biomass resources. Results indicate significant variability in gasification potential with moisture content ranging from 0.5% to 14.9% ash content from 0.5% to 5.5% and higher heating values between 16.8 and 21.2 MJ/kg. Theoretical hydrogen yield calculations suggest that Portuguese biomasses could produce between 85 and 120 kg H2 per ton of dry biomass with species such as Eucalyptus globulus Pinus pinaster and Cytisus multiflorus showing the highest potential. Statistical analysis reveals strong negative correlations between moisture content and hydrogen yield potential (r = −0.63) while carbon content shows positive correlation with gasification efficiency. The comprehensive characterization provides essential data for optimizing gasification processes and establishing Portugal’s biomass-tohydrogen production capacity contributing to the national hydrogen strategy and renewable energy transition.
A Multi-Optimization Method for Capacity Configuration of Hybrid Electrolyzer in a Stand-Alone Wind-Photovoltaic-Battery System
Mar 2025
Publication
The coupling of renewable energy sources with electrolyzers under standalone conditions significantly enhances the operational efficiency and improves the costeffectiveness of electrolyzers as a technologically viable and sustainable solution for green hydrogen production. To address the configuration optimization challenge in hybrid electrolyzer systems integrating alkaline water electrolysis (AWE) and proton exchange membrane electrolysis (PEME) this study proposes an innovative methodology leveraging the morphological analysis of Pareto frontiers to determine the optimal solutions under multi-objective functions including the hydrogen production cost and efficiency. Then the complementary advantages of AWE and PEME are explored. The proposed methodology demonstrated significant performance improvements compared with the single-objective optimization function. When contrasted with the economic optimization function the hybrid system achieved a 1.00% reduction in hydrogen production costs while enhancing the utilization efficiency by 21.71%. Conversely relative to the efficiency-focused optimization function the proposed method maintained a marginal 5.22% reduction in utilization efficiency while achieving a 6.46% improvement in economic performance. These comparative results empirically validate that the proposed hybrid electrolyzer configuration through the implementation of the novel optimization framework successfully establishes an optimal balance between the economy and efficiency of hydrogen production. Additionally a discussion on the key factors affecting the rated power and mixing ratio of the hybrid electrolyzer in this research topic is provided.
Hybrid CSP-PV Combination to Enhance the Green Hydrogen Production in Morocco: Solar Technologies Evaluation and Techno-Economic Analysis
Mar 2025
Publication
With the fast-growing implementation of renewable energy projects Morocco is positioned as a pioneer in green and sustainable development aiming to achieve 52% of its electricity production from renewable sources by 2030. This ambitious target faces challenges due to the intermittent nature of renewable energy which impacts grid stability. Hydrogen offers a promising solution but identifying the most cost-effective production configurations is critical due to high investment costs. Despite the growing interest in renewable energy systems the techno-economic analysis of (Concentrating Solar PowerPhotovoltaic) CSP-PV hybrid configurations remain insufficiently explored. Addressing this gap is critical for optimizing hybrid systems to ensure cost-effective and scalable hydrogen production. This study advances the field by conducting a detailed technoeconomic assessment of CSP-PV hybrid systems for hydrogen production at selected locations in Morocco leveraging high-precision meteorological data to enhance the accuracy and reliability of the analysis. Three configurations are analyzed: (i) a standalone 10 MW PV plant (ii) a standalone 10 MW Stirling dish CSP plant and (iii) a 10 MW hybrid system combining 5 MW from each technology. Results reveal that hybrid CSP-PV systems with single-axis PV tracking achieve the lowest levelized cost of hydrogen (LCOH2) reducing costs by up to 11.19% and increasing hydrogen output by approximately 10% compared to non-tracking systems. Additionally the hybrid configuration boosts annual hydrogen production by 2.5–11.2% compared to PV-only setups and reduces production costs by ~25% compared to standalone CSP systems. These findings demonstrate the potential of hybrid solar systems for cost-efficient hydrogen production in regions with abundant solar resources.
Non-Renewable and Renewable Exergy Costs of Water Electrolysis in Hydrogen Production
Mar 2025
Publication
Hydrogen production via water electrolysis and renewable electricity is expected to play a pivotal role as an energy carrier in the energy transition. This fuel emerges as the most environmentally sustainable energy vector for non-electric applications and is devoid of CO2 emissions. However an electrolyzer´s infrastructure relies on scarce and energyintensive metals such as platinum palladium iridium (PGM) silicon rare earth elements and silver. Under this context this paper explores the exergy cost i.e. the exergy destroyed to obtain one kW of hydrogen. We disaggregated it into non-renewable and renewable contributions to assess its renewability. We analyzed four types of electrolyzers alkaline water electrolysis (AWE) proton exchange membrane (PEM) solid oxide electrolysis cells (SOEC) and anion exchange membrane (AEM) in several exergy cost electricity scenarios based on different technologies namely hydro (HYD) wind (WIND) and solar photovoltaic (PV) as well as the different International Energy Agency projections up to 2050. Electricity sources account for the largest share of the exergy cost. Between 2025 and 2050 for each kW of hydrogen generated between 1.38 and 1.22 kW will be required for the SOEC-hydro combination while between 2.9 and 1.4 kW will be required for the PV-PEM combination. A Grassmann diagram describes how non-renewable and renewable exergy costs are split up between all processes. Although the hybridization between renewables and the electricity grid allows for stable hydrogen production there are higher non-renewable exergy costs from fossil fuel contributions to the grid. This paper highlights the importance of nonrenewable exergy cost in infrastructure which is required for hydrogen production via electrolysis and the necessity for cleaner production methods and material recycling to increase the renewability of this crucial fuel in the energy transition.
A Risk-based Multi-criteria Decision-making Framework for Offshore Green Hydrogen System Developments: Pathways for Utilizing Existing and New Infrastructure
Mar 2024
Publication
Unlocking the potential of offshore renewables for green hydrogen (GH2) production can be a game-changer empowering economies with their visionary clean energy policies amplifying energy security and promoting economic growth. However their novelty entails uncertainty and risk necessitating a robust framework for facility deployment and infrastructure planning. To optimize offshore GH2 infrastructure placement this work proposes a novel and robust GIS-based multi-criteria decision-making (MCDM) framework. Encompassing thirtytwo techno-socio-economic-safety factors and ocean environmental impact analysis this methodology facilitates informed decision-making for sustainable and safe GH2 development. Utilizing the synergies between offshore wind and solar resources this study investigates the potential of hybrid ocean technologies to enhance space utilization and optimize efficiency. To illustrate the practical application of the proposed framework a case study examining a GH2 system in Australia's marine region and its potential nexus with nearby offshore industries has been conducted. The performed life cycle assessment (LCA) explored various configurations of GH2 production storage and transportation technologies. A Bayesian objective weight integrating technique has been introduced and contrasted statistically with the hybrid CRITIC Entropy MEREC and MARCOS-based MCDM approaches. Various locations are ranked based on the net present value of life cycle cost GH2 production capacity risk availability and environment sustainability factors illustrating their compatibility. A sensitivity analysis is conducted to confirm that a Bayesian approach improves the decision-making outcomes through identifying optimal criteria weights and alternative ranks more effectively. Empowering strategic GH2 decisions globally the proposed approach optimizes system performances cost sustainability and safety excelling in harsh environments.
Offshore Facilities to Produce Hydrogen
Jun 2017
Publication
As a result of international agreements on the reduction of CO2 emissions new technologies using hydrogen are being developed. Hydrogen despite being the most abundant element in Nature cannot be found in its pure state. Water is one of the most abundant sources of hydrogen on the planet. The proposal here is to use energy from the sea in order to obtain hydrogen from water. If plants to obtain hydrogen were to be placed in the ocean the impact of long submarines piping to the coast will be reduced. Further this will open the way for the development of ships propelled by hydrogen. This paper discusses the feasibility of an offshore installation to obtain hydrogen from the sea using ocean wave energy.
Electrochemical Looping Green Hydrogen Production by Using Water Electrochemically Treated as a Raw Material for the Electrolyzer
May 2025
Publication
In this study the applicability of an integrated-hybrid process was performed in a divided electrochemical cell for removing organic matter from a polluted effluent with simultaneous production of green H2. After that the depolluted water was reused for the first time in the cathodic compartment once again in the same cell to be a viable environmental alternative for converting water into energy (green H2) with higher efficiency and reasonable cost requirements. The production of green H2 in the cathodic compartment (Ni-Fe-based steel stainless (SS) mesh as cathode) in concomitance with the electrochemical oxidation (EO) of wastewater in the anodic compartment (boron-doped diamond (BDD) supported in Nb as anode) was studied (by applying different current densities (j = 30 60 and 90 mA cm−2 ) at 25 ◦C) in a divided-membrane type electrochemical cell driven by a photovoltaic (PV) energy source. The results clearly showed that in the first step the water anodically treated by applying 90 mA cm−2 for 180 min reached high-quality water parameters. Meanwhile green H2 production was greater than 1.3 L with a Faradaic efficiency of 100%. Then in a second step the water anodically treated was reused in the cathodic compartment again for a new integrated-hybrid process with the same electrodes under the same experimental conditions. The results showed that the reuse of water in the cathodic compartment is a sustainable strategy to produce green H2 when compared to the electrolysis using clean water. Finally two implied benefits of the proposed process are the production of green H2 and wastewater cleanup both of which are equally significant and sustainable. The possible use of H2 as an energetic carrier in developing nations is a final point about sustainability improvements. This is a win-win solution.
Review - Engineering Challenges in Green Hydrogen Production Systems
May 2022
Publication
Today hydrogen (H2) is overwhelmingly produced through steam methane reforming (SMR) of natural gas which emits about 12 kg of carbon dioxide (CO2) for 1 kg of H2 (∼12 kg-CO2/kg-H2). Water electrolysis offers an alternative for H2 production but today’s electrolyzers consume over 55 kWh of electricity for 1 kg of H2 (>55 kWh/kg-H2). Electric grid-powered water electrolysis would emit less CO2 than the SMR process when the carbon intensity for grid power falls below 0.22 kg-CO2/kWh. Solar- and wind-powered electrolytic H2 production promises over 80% CO2 reduction over the SMR process but large-scale (megawatt to gigawatt) direct solar- or wind-powered water electrolysis has yet to be demonstrated. In this paper several approaches for solar-powered electrolysis are analyzed: (1) coupling a photovoltaic (PV) array with an electrolyzer through alternating current; (2) direct-current (DC) to DC coupling; and (3) direct DC-DC coupling without a power converter. Co-locating a solar or wind farm with an electrolyzer provides a lower power loss and a lower upfront system cost than long-distance power transmission. A load-matching PV system for water electrolysis enables a 10%–50% lower levelized cost of electricity than the other systems and excellent scalability from a few kilowatts to a gigawatt. The concept of maximum current point tracking is introduced in place of maximum power point tracking to maximize the H2 output by solarpowered electrolysis.
Design and Layout Planning of a Green Hydrogen Production Facility
May 2025
Publication
In response to the greenhouse gas (GHG) reduction targets set by the Paris Agreement green hydrogen has become a key solution for global decarbonisation. However research on the design of green hydrogen production facilities remains limited particularly in Brazil. This study bridges this gap by developing a comprehensive design for a green hydrogen production plant powered by an 81 MW photovoltaic (PV) system in Ceará Brazil. The facility layout equipment sizing and resource requirements were determined using the Systematic Layout Planning (SLP) method based on the available energy for daily hydrogen production. The design also integrates safety regulations including local standards in Ceará as well as raw material needs and production capacity. This study delivers a detailed facility layout specifying equipment placement and capacity based on the PV plant’s output while ensuring compliance with safety protocols. This research contributes to the green hydrogen literature by providing a structured methodology for facility design serving as a reference for future projects and fostering the advancement of green hydrogen technology particularly in developing countries.
Green Hydrogen Production via Floating Photovoltaic Systems on Irrigation Reservoirs: An Italian Case Study
Apr 2025
Publication
This study investigates the potential for establishing a self-sufficient renewable hydrogen production facility utilising a floating photovoltaic (FPV) system on an artificial irrigation reservoir located in a small municipality in southern Italy. The analysis examines the impact of different system configurations and operating conditions on the technical economic and environmental performance with a particular focus on hydrogen production and water conservation resulting from reduced evaporation. Different sizes of the FPV plant are considered with and without a tracking system. The electrolyser performance is evaluated under both fixed and variable load conditions also considering the integration of battery storage to ensure consistent operation. The findings indicate that the adoption of the largest FPV plant can result in the conservation of approximately 1.87 million m3 of water annually while simultaneously producing up to 4199 tons of hydrogen per year in variable load mode—more than twice the output compared to fixed load conditions. Although battery integration increases hydrogen production it also leads to higher investment and maintenance costs. Therefore the variable load operation emerges as the most economically viable option reducing the levelized cost of hydrogen (LCOH) to €13.18/kg a 26 % reduction compared to fixed load operation. Moreover the implementation of a vertical axis tracking system leads to only marginal LCOH reductions (maximum 2.2 %) and does not justify the additional complexity. In all tested scenarios the system proves to be self-sustaining. Given the case study’s location in southern Italy—where a pilot project for fuel cell–battery hybrid trains is underway—the hydrogen produced is assumed to be used for railway applications as a possible offtaker. The analysis shows that the potential of the system in terms of hydrogen production is much higher (tens of times) than the estimated demand of the present hydrogen railway configuration thus suggesting that a significant expansion of the number of trains and routes served could be considered. Although this work is based on a specific case study its key findings are potentially replicable in other contexts—particularly in Mediterranean or semi-arid regions where water scarcity may otherwise act as a limiting factor for the deployment of hydrogen production systems.
Characterization of Perfluoro Sulfonic Acid Membranes for Potential Electrolytic Hydrogen Production and Fuel Cell Applications for Local and Global Green Hydrogen Economy
Aug 2025
Publication
Fuel cells have become a fundamental technology in the development of clean energy systems playing a vital role in the global shift toward a low-carbon future. With the growing need for sustainable hydrogen production perfluoro sulfonic acid (PFSA) ionomer membranes play a critical role in optimizing green hydrogen technologies and fuel cells. This study aims to investigate the effects of different environmental and solvent treatments on the chemical and physical properties of Nafion N−115 membranes to evaluate their suitability for both hydrogen production in proton exchange membrane (PEM) electrolyzers and hydrogen utilization in fuel cells supporting integrated applications in the local and global green hydrogen economy. To achieve this Nafion N−115 membranes were partially dissolved in various solvent mixtures including ethanol/isopropanol (EI) isopropanol/water (IW) dimethylformamide/N-methyl-2-pyrrolidone (DN) and ethanol/methanol/isopropanol (EMI) evaluated under water immersion and thermal stress and characterized for chemical stability mechanical strength water uptake and proton conductivity using advanced electrochemical and spectroscopic techniques. The results demonstrated that the EMI-treated membrane showed the highest proton conductivity and maintained its structural integrity making it the most promising for hydrogen electrolysis applications. Conversely the DN-treated membrane exhibited reduced stability and lower conductivity due to solvent-induced degradation. This study highlights the potential of EMI as an optimal solvent mixture for enhancing PFSA membranes performance in green hydrogen production contributing to the advancement of sustainable energy solutions.
Electrical Energy Storage Combined with Renewable Hydrogen Production
Feb 2025
Publication
The applications and need for large-scale long-duration electrical energy storage are growing as both the share of renewable energy in energy systems and the demand for flexibility increase. One potential application is the renewable hydrogen industry where temporal matching of renewable electricity generation and hydrogen production will be required in the future according to the new European Union regulations. In this paper a case study of electrical energy storage utilization in hydrogen production is conducted in the Nordic context with a high share of wind production. The storage is used in the hydrogen production process for temporal matching. The levelized cost of storage of three medium- to long-term storage technologies is assessed using an Excel-based model with four case approaches. In the first case approach the electrolyzer load is inflexible while the other approaches explore how the flexibility of the electrolyzer and the increase in renewable production capacity affect the size and cost of the storage. Electro-thermal energy storage based on sand as storage material presented the lowest levelized cost of storage (114-198 €/MWh) due to its low energy-related investment cost. However the results show that additional usage purposes for all examined storage technologies are required to avoid high investment costs. Additionally flexibility from the electrolyzer load and over-investing in renewable capacity is required. In conclusion storage should not be the only component providing flexibility in the studied system and it should be used to integrate multiple assets in the wider energy system to reach cost-effectiveness. This paper brings novelty by expanding on the storage technology options considered in previous literature and deepening the perspective of storage as a component in renewable hydrogen production. Future research should assess the effect of electricity prices and emissions allowance prices from the regulatory perspective which could further reduce the storage investment.
Sustainable Hydrogen Production from Plastic Waste: Optimizing Pyrolysis for a Circular Economy
Mar 2025
Publication
: Hydrogen is a clean non-polluting fuel and a key player in decarbonizing the energy sector. Interest in hydrogen production has grown due to climate change concerns and the need for sustainable alternatives. Despite advancements in waste-to-hydrogen technologies the efficient conversion of mixed plastic waste via an integrated thermochemical process remains insufficiently explored. This study introduces a novel multi-stage pyrolysis-reforming framework to maximize hydrogen yield from mixed plastic waste including polyethylene (HDPE) polypropylene (PP) and polystyrene (PS). Hydrogen yield optimization is achieved through the integration of two water–gas shift reactors and a pressure swing adsorption unit enabling hydrogen production rates of up to 31.85 kmol/h (64.21 kg/h) from 300 kg/h of mixed plastic wastes consisting of 100 kg/h each of HDPE PP and PS. Key process parameters were evaluated revealing that increasing reforming temperature from 500 ◦C to 1000 ◦C boosts hydrogen yield by 83.53% although gains beyond 700 ◦C are minimal. Higher reforming pressures reduce hydrogen and carbon monoxide yields while a steam-to-plastic ratio of two enhances production efficiency. This work highlights a novel scalable and thermochemically efficient strategy for valorizing mixed plastic waste into hydrogen contributing to circular economy goals and sustainable energy transition.
No more items...