Production & Supply Chain
Study on Hydrogen from Renewable Resources in the EU
Feb 2016
Publication
Hydrogen can be produced from a broad range of renewable energy sources acting as a unique energy hub providing low or zero emission energy to all energy consuming sectors. Technically and efficiently producing hydrogen from renewable sources is a key enabler for these developments.<br/>Traditionally hydrogen has been produced from fossil sources by steam methane reforming of natural gas. At present the technology of choice to produce renewable ‘green’ hydrogen is water electrolysis using renewable electricity. The FCH JU has been supporting research and development of electrolyser technology and application projects aiming to increase the energy efficiency of electrolytic hydrogen production from renewable sources and to reduce costs.<br/>This study complements these activities by focusing on renewable hydrogen generation other than electrolysis. In this report these alternative hydrogen generation technologies are described characterized by their technical capabilities maturity and economic performance and assessed for their future potential.<br/>A methodology has been devised to first identify and structure a set of relevant green hydrogen pathways (eleven pathways depicted in the figure below) analyse them at a level of detail allowing a selection of those technologies which fit into and promise early commercialization in the framework of FCH 2 JU’s funding program.<br/>These originally proposed eleven pathways use solar thermal energy sunlight or biomass as major energy input.
Photocatalytic Hydrogen Production by Biomimetic Indium Sulfide Using Mimosa Pudica Leaves as Template
Jan 2019
Publication
Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization revealing an increase in surface area decrease in microsphere size and pore size and an increase in pore volume density in samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of organic sulfur (Ssingle bondO/Ssingle bondC/Ssingle bondH) and sulfur oxide species (single bondSO2 SO32− SO42−) at the surface of the indium sulfide in samples synthesized with the template. Biomimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant present on the Mimosa pudica leaves. The presence of these sulfur and iron species favors the photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and promoting water oxidation on the surface of the templated particles respectively. The photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sulfide and indium sulfide synthesized without the organic template were 73 and 22 μmol g−1 respectively indicating an improvement by a factor of three in the templated sample.
Optimization of Geothermal- and Solar-driven Clean Electricity and Hydrogen Production Multi-generation Systems to Address the Energy Nexus
Jan 2022
Publication
Given the limited sources of fossil fuels mankind should find new ways to meet its energy demands. In this regard geothermal and solar energy are acknowledged as reliable safe promising and clean means for this purpose. In this research study a comparative analysis is applied on geothermal and solar-driven multi-generation systems for clean electricity and hydrogen production through energy and exergy assessments. The system consists of an organic Rankine cycle a proton electrolyte membrane electrolyzer and a thermoelectric generator subsystem. The Engineering Equation Solver software has been utilized in order to model the system and obtain the output contours sensitivity analysis and exergy destruction. The results were calculated considering the ambient temperature of Bandar Abbas city as a case study considering the geothermal system due to better performance in comparison to the solar system. According to the sensitivity analysis the turbine efficiency evaporator inlet temperature thermoelectric generator suitability criterion pump efficiency and evaporator inlet mass flow rate are the most influential parameters. Also the exergy analysis showed that the utmost system's exergy destruction is pertinent to the evaporator and the least is related to the pump. In addition the system produces 352816 kWh and 174.913 kg of electrical power and hydrogen during one year.
Production of Hydrogen and Methane from Lignocellulose Waste by Fermentation. A Review of Chemical Pretreatment for Enhancing the Efficiency of the Digestion Process
May 2020
Publication
In Poland lignocellulose wastes constitute about 43% of municipal waste (∼4 417 Gg). Anaerobic and/or dark fermentation are sustainable methods of lignocellulosic waste-management and contribute greatly to ever increasing demand for energy and products. This paper presents the results of the theoretical potential of methane and hydrogen yields from lignocellulosic wastes. Also state-of-the-art methods in the field of lignocellulose fermentation as well as its development and pretreatment are discussed. The main reason for applying pretreatment is the decomposition (decrystallization) of cellulose and hemicellulose and cleavage of polymers into monomers which may be more easily digested by bacteria in DF and AD fermentation processes. At current price levels the cheapest methods are basic and acidic pretreatments. Acidic pretreatment is very efficient (especially using sulfuric acids) solubilizing up to 80% of lignocellulose but strong acids produce inhibitors and are highly corrosive. Alkaline pretreatment is a competitive and even more efficient (>80%) method to acidic pretreatment especially for some rigid materials that acid cannot solubilize. Oxidative pretreatment is usually expensive but can support the sacharisation process by either alkaline or acidic methods; in the case of NMMO efficiency reaching 82%. Ion-liquid pretreatment is selective (almost 100% sacharisation) but very costly and is too expensive for hydrogen production. The last methods can be profitable if some valuable by-products results. An efficient chemical pretreatment should be preceded by physical comminution e.g. mechanical which is the cheapest one.
FPGA-Based Implementation of an Optimization Algorithm to Maximize the Productivity of a Microbial Electrolysis Cell
Jun 2021
Publication
In this work the design of the hardware architecture to implement an algorithm for optimizing the Hydrogen Productivity Rate (HPR) in a Microbial Electrolysis Cell (MEC) is presented. The HPR in the MEC is maximized by the golden section search algorithm in conjunction with a super-twisting controller. The development of the digital architecture in the implementation step of the optimization algorithm was developed in the Very High Description Language (VHDL) and synthesized in a Field Programmable Gate Array (FPGA). Numerical simulations demonstrated the feasibility of the proposed optimization strategy embedded in an FPGA Cyclone II. Results showed that only.
Development of an Operation Strategy for Hydrogen Production Using Solar PV Energy Based on Fluid Dynamic Aspects
Apr 2017
Publication
Alkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However wind and solar energy sources are highly dependent on weather conditions. As a result power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim a mathematical model including the influence of electrode-membrane distance temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy especially when the electrolyzer is powered by renewable energies.
Layered Transition Metal Selenophosphites for Visible Light Photoelectrochemical Production of Hydrogen
Jun 2021
Publication
The growing consumption of global energy has posed serious challenges to environmental protection and energy supplies. A promising solution is via introducing clean and sustainable energy sources including photoelectrochemical hydrogen fuel production. 2D materials such as transition metal trichalcogenphosphites (MPCh3) are gaining more and more interest for their potential as photocatalysts. Crystals of transition metal selenophosphites namely MnPSe3 FePSe3 and ZnPSe3 were tested as photocatalysts for the hydrogen evolution reaction (HER). ZnPSe3 is the one that exhibited the lowest overpotential and the higher response to the light during photocurrent experiments in acidic media. For this reason among the crystals in this work it is the most promising for the photocatalyzed production of hydrogen.
Enhanced Hydrogen Generation from Hydrolysis of MgLi Doped with Expanded Graphite
Apr 2021
Publication
Hydrolysis of Mg-based materials is considered as a potential means of safe and convenient real-time control of H2 release enabling efficient loading discharge and utilization of hydrogen in portable electronic devices. At present work the hydrogen generation properties of MgLi-graphite composites were evaluated for the first time. The MgLi-graphite composites with different doping amounts of expanded graphite (abbreviated as EG hereinafter) were synthesized through ball milling and the hydrogen behaviors of the composites were investigated in chloride solutions. Among the above doping systems the 10 wt% EG-doped MgLi exhibited the best hydrogen performance in MgCl2 solutions. In particular the 22 h-milled MgLi-10 wt% EG composites possessed both desirable hydrogen conversion and rapid reaction kinetics delivering a hydrogen yield of 966 mL H2 g−1 within merely 2 min and a maximum hydrogen generation rate of 1147 mL H2 min−1 g−1 as opposed to the sluggish kinetics in the EG-free composites. Moreover the EG-doped MgLi showed superior air-stable ability even under a 75 RH% ambient atmosphere. For example the 22 h-milled MgLi-10 wt% EG composites held a fuel conversion of 89% after air exposure for 72 h rendering it an advantage for Mg-based materials to safely store and transfer in practical applications. The similar favorable hydrogen performance of MgLi-EG composites in (simulate) seawater may shed light on future development of hydrogen generation technologies.
A Direct Synthesis of Platinum/Nickel Co-catalysts on Titanium Dioxide Nanotube Surface from Hydrometallurgical-type Process Streams
Aug 2018
Publication
Solutions that simulate hydrometallurgical base metal process streams with high nickel (Ni) and minor platinum (Pt) concentrations were used to create Pt/Ni nanoparticles on TiO2 nanotube surfaces. For this electrochemical deposition – redox replacement (EDRR) was used that also allowed to control the nanoparticle size density and Pt/Ni content of the deposited nanoparticles. The Pt/Ni nanoparticle decorated titanium dioxide nanotubes (TiO2 nanotubes) become strongly activated for photocatalytic hydrogen (H2) evolution. Moreover EDRR facilitates nanoparticle formation without the need for any additional chemicals and is more effective than electrodeposition alone. Actually a 10000-time enrichment level of Pt took place on the TiO2 surface when compared to Pt content in the solution with the EDRR method. The results show that hydrometallurgical streams offer great potential as an alternative raw material source for industrial catalyst production when coupled with redox replacement electrochemistry.
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
Assessment of Hydrogen Direct Reduction for Fossil-free Steelmaking
Aug 2018
Publication
Climate policy objectives require zero emissions across all sectors including steelmaking. The fundamental process changes needed for reaching this target are yet relatively unexplored. In this paper we propose and assess a potential design for a fossil-free steelmaking process based on direct reduction of iron ore with hydrogen. We show that hydrogen direct reduction steelmaking needs 3.48 MWh of electricity per tonne of liquid steel mainly for the electrolyser hydrogen production. If renewable electricity is used the process will have essentially zero emissions. Total production costs are in the range of 361–640 EUR per tonne of steel and are highly sensitive to the electricity price and the amount of scrap used. Hydrogen direct reduction becomes cost competitive with an integrated steel plant at a carbon price of 34–68 EUR per tonne CO2 and electricity costs of 40 EUR/MWh. A key feature of the process is flexibility in production and electricity demand which allows for grid balancing through storage of hydrogen and hot-briquetted iron or variations in the share of scrap used.
Hollow CdS-Based Photocatalysts
Oct 2020
Publication
In recent years photocatalytic technology driven by solar energy has been extensively investigated to ease energy crisis and environmental pollution. Nevertheless efficiency and stability of photocatalysts are still unsatisfactory. To address these issues design of advanced photocatalysts is important. Cadmium sulphide (CdS) nanomaterials are one of the promising photocatalysts. Among them hollow-structured CdS featured with enhanced light absorption ability large surface area abundant active sites for redox reactions and reduced diffusion distance of photogenerated carriers reveals a broad application prospect. Herein main synthetic strategies and formation mechanism of hollow CdS photocatalysts are summarized. Besides we comprehensively discuss the current development of hollow-structured CdS nanomaterials in photocatalytic applications including H2 production CO2 reduction and pollutant degradation. Finally brief conclusions and perspectives on the challenges and future directions for hollow CdS photocatalysts are proposed.
Stronger Together: Multi-annual Variability of Hydrogen Production Supported by Wind Power in Sweden
Mar 2021
Publication
Hydrogen produced from renewable electricity will play an important role in deep decarbonisation of industry. However adding large electrolyser capacities to a low-carbon electricity system also increases the need for additional electricity generation from variable renewable energies. This will require hydrogen production to be variable unless other sources provide sufficient flexibility. Existing sources of flexibility in hydro-thermal systems are hydropower and thermal generation which are both associated with sustainability concerns. In this work we use a dispatch model for the case of Sweden to assess the power system operation with large-scale electrolysers assuming that additional wind power generation matches the electricity demand of hydrogen production on average. We evaluate different scenarios for restricting the flexibility of hydropower and thermal generation and include 29 different weather years to test the impact of variable weather regimes. We show that (a) in all scenarios electrolyser utilisation is above 60% on average (b) the inter-annual variability of hydrogen production is substantial if thermal power is not dispatched for electrolysis and (c) this problem is aggravated if hydropower flexibility is also restricted. Therefore either long-term storage of hydrogen or backup hydrogen sources may be necessary to guarantee continuous hydrogen flows. Large-scale dispatch of electrolysis capacity supported by wind power makes the system more stable if electrolysers ramp down in rare hours of extreme events with low renewable generation. The need for additional backup capacities in a fully renewable electricity system will thus be reduced if wind power and electrolyser operation are combined in the system.
Synthetic Natural Gas Production from CO2 and Renewable H2: Towards Large-scale Production of Ni–Fe Alloy Catalysts for Commercialization
Apr 2020
Publication
Synthetic natural gas (SNG) is one of the promising energy carriers for the excessive electricity generated from variable renewable energy sources. SNG production from renewable H2 and CO2 via catalytic CO2 methanation has gained much attention since CO2 emissions could be simultaneously reduced. In this study Ni–Fe/(MgAl)Ox alloy catalysts for CO2 methanation were prepared via hydrotalcite precursors using a rapid coprecipitation method. The effect of total metal concentration on the physicochemical properties and catalytic behavior was investigated. Upon calcination the catalysts showed high specific surface area of above 230 m2 g−1. Small particle sizes of about 5 nm were obtained for all catalysts even though the produced catalyst amount was increased by 10 times. The catalysts exhibited excellent space-time yield under very high gas space velocity (34000 h−1) irrespective of the metal concentration. The CO2 conversions reached 73–79% at 300 °C and CH4 selectivities were at 93–95%. Therefore we demonstrated the potential of large-scale production of earth-abundant Ni–Fe based catalysts for CO2 methanation and the Power-to-Gas technology.
Self-Supported High-Entropy Alloy Electrocatalyst for Highly Efficient H2 Evolution in Acid Condition
Jul 2020
Publication
Developing non-precious catalysts as Pt substitutes for electrochemical hydrogen evolution reaction (HER) with superior stability in acidic electrolyte is of critical importance for large-scale low-cost hydrogen production from water. Herein we report a CoCrFeNiAl high-entropy alloy (HEA) electrocatalyst with self-supported structure synthesized by mechanical alloying and spark plasma sintering (SPS) consolidation. The HEA after HF treatment and in situ electrochemical activation for 4000 cycles of cyclic voltammetry (HF-HEAa2) presents favourable activity with overpotential of 73 mV to reach a current density of 10 mA cm−2 and a Tafel slope of 39.7 mV dec−1. The alloy effect of Al/Cr with Co/Fe/Ni at atomic level high-temperature crystallization as well as consolidation by SPS endow CoCrFeNiAl HEA with high stability in 0.5 M H2SO4 solution. The superior performance of HF-HEAa2 is related with the presence of metal hydroxides/oxides groups on HEA.
In Situ Irradiated X-Ray Photoelectron Spectroscopy on Ag-WS2 Heterostructure For Hydrogen Production Enhancement
Oct 2020
Publication
The hot electron transition of noble materials to catalysis accelerated by localized surface plasmon resonances (LSPRs) was detected by in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) in this article. This paper synthesized an Ag Nanowire (AgNW) @ WS2 core-shell structure with an ultra-thin shell of WS2(3 ∼ 7 nm) and characterized its photocatalytic properties. The AgNW@WS2 core-shell structure exhibited different surface-enhanced Raman spectroscopy (SERS) effects by changing shell thickness indicating that the effect of AgNW could be controlled by WS2 shell. Furthermore the hydrogen production of AgNW@WS2 could reach to 356% of that of pure WS2. The hot electrons arising from the LSPRs effect broke through the Schottky barrier between WS2 and AgNW and transferred to the WS2 shell whose photocatalytic effect was thus enhanced. In addition when the LSPRs effect was intensified by reducing the shell thickness the hot electron transition of noble materials to catalysis was accelerated.
Membrane-Based Electrolysis for Hydrogen Production: A Review
Oct 2021
Publication
Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review various types of water splitting technologies and membrane selection for electrolyzers are discussed. We highlight the basic principles recent studies and achievements in membrane-based electrolysis for hydrogen production. Previously the NafionTM membrane was the gold standard for PEM electrolyzers but today cheaper and more effective membranes are favored. In this paper CuCl–HCl electrolysis and its operating parameters are summarized. Additionally a summary is presented of hydrogen production by water splitting including a discussion of the advantages disadvantages and efficiencies of the relevant technologies. Nonetheless the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore herein we address the challenges prospects and future trends in this field of research and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.
Gas Switching Reforming for Flexible Power and Hydrogen Production to Balance Variable Renewables
May 2019
Publication
Variable renewable energy (VRE) is expected to play a major role in the decarbonization of the electricity sector. However decarbonization via VRE requires a fleet of flexible dispatchable plants with low CO2 emissions to supply clean power during times with limited wind and sunlight. These plants will need to operate at reduced capacity factors with frequent ramps in electricity output posing techno-economic challenges. This study therefore presents an economic assessment of a new near-zero emission power plant designed for this purpose. The gas switching reforming combined cycle (GSR-CC) plant can produce electricity during times of low VRE output and hydrogen during times of high VRE output. This product flexibility allows the plant to operate continuously even when high VRE output makes electricity production uneconomical. Although the CO2 avoidance cost of the GSR-CC plant (€61/ton) was similar to the benchmark post-combustion CO2 capture plant under baseload operation GSR-CC clearly outperformed the benchmark in a more realistic scenario where continued VRE expansion forces power plants into mid-load operation (45% capacity factor). In this scenario GSR-CC promises a 5 %-point higher annualized investment return than the post-combustion benchmark. GSR-CC therefore appears to be a promising concept for a future scenario with high VRE market share and CO2 prices provided that a large market for clean hydrogen is established.
Methanol Steam Reforming for Hydrogen Generation Via Conventional and Membrane Reactors: A Review
Sep 2013
Publication
Variable renewable energy (VRE) is expected to play a major role in the decarbonization of the electricity sector. However decarbonization via VRE requires a fleet of flexible dispatchable plants with low CO2 emissions to supply clean power during times with limited wind and sunlight. These plants will need to operate at reduced capacity factors with frequent ramps in electricity output posing techno-economic challenges. This study therefore presents an economic assessment of a new near-zero emission power plant designed for this purpose. The gas switching reforming combined cycle (GSR-CC) plant can produce electricity during times of low VRE output and hydrogen during times of high VRE output. This product flexibility allows the plant to operate continuously even when high VRE output makes electricity production uneconomical. Although the CO2 avoidance cost of the GSR-CC plant (€61/ton) was similar to the benchmark post-combustion CO2 capture plant under baseload operation GSR-CC clearly outperformed the benchmark in a more realistic scenario where continued VRE expansion forces power plants into mid-load operation (45% capacity factor). In this scenario GSR-CC promises a 5 %-point higher annualized investment return than the post-combustion benchmark. GSR-CC therefore appears to be a promising concept for a future scenario with high VRE market share and CO2 prices provided that a large market for clean hydrogen is established.
Baseload Electricity and Hydrogen Supply Based on Hybrid PV-wind Power Plants
Sep 2019
Publication
The reliable supplies of electricity and hydrogen required for 100% renewable energy systems have been found to be achievable by utilisation of a mix of different resources and storage technologies. In this paper more demanding parameter conditions than hitherto considered are used in measurement of the reliability of variable renewable energy resources. The defined conditions require that supply of baseload electricity (BLEL) and baseload hydrogen (BLH2) occurs solely using cost-optimised configurations of variable photovoltaic solar power onshore wind energy and balancing technologies. The global scenario modelling is based on hourly weather data in a 0.45° × 0.45° spatial resolution. Simulations are conducted for Onsite and Coastal Scenarios from 2020 to 2050 in 10-year time-steps. The results show that for 7% weighted average cost of capital Onsite BLEL can be generated at less than 119 54 41 and 33 €/MWhel in 2020 2030 2040 and 2050 respectively across the best sites with a maximum 20000 TWh annual cumulative generation potential. Up to 20000 TWhH2HHV Onsite BLH2 can be produced at less than 66 48 40 and 35 €/MWhH2HHV in 2020 2030 2040 and 2050 respectively. A partially flexible electricity demand at 8000 FLh could significantly reduce the costs of electricity supply in the studied scenario. Along with battery storage power-to-hydrogen-to-power is found to have a major role in supply of BLEL beyond 2030 as both a daily and seasonal balancing solution. Batteries are not expected to have a significant role in the provision of electricity to water electrolysers.
No more items...