Production & Supply Chain
Conceptual Design of an Offshore Hydrogen Platform
Feb 2024
Publication
Offshore green hydrogen emerges as a guiding light in the global pursuit of environmental sustainability and net-zero objectives. The burgeoning expansion of offshore wind power faces significant challenges in grid integration. This avenue towards generating offshore green hydrogen capitalises on its ecological advantages and substantial energy potential to efficiently channel offshore wind power for onshore energy demands. However a substantial research void exists in efficiently integrating offshore wind electricity and green hydrogen. Innovative designs of offshore hydrogen platforms present a promising solution to bridge the gap between offshore wind and hydrogen integration. Surprisingly there is a lack of commercially established offshore platforms dedicated to the hydrogen industry. However the wealth of knowledge from oil and gas platforms contributes valuable insights to hydrogen platform design. Diverging from the conventional decentralised hydrogen units catering to individual turbines this study firstly introduces a pioneering centralised Offshore Green Hydrogen Platform (OGHP) which seamlessly integrates modular production storage and offloading modulars. The modular design of facilitates scalability as wind capacity increases. Through a detailed case study centred around a 100-Megawatt floating wind farm the design process of offshore green hydrogen modulars and its floating sub-structure is elucidated. Stability analysis and hydrodynamic analysis are performed to ensure the safety of the OGHP under the operation conditions. The case study will enhance our understanding OGHP and its modularised components. The conceptual design of modular OGHP offers an alternative solution to ‘‘Power-to-X’’ for offshore renewable energy sector.
Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties
Nov 2023
Publication
Hydrogen production modules (HPMs) play a crucial role in harnessing abundant photovoltaic power by producing and supplying hydrogen to factories resulting in significant operational cost reductions and efficient utilization of the photovoltaic panel output. However the output of photovoltaic power is stochastic which will affect the revenue of investing in an HPM. This paper presents a comprehensive analysis of HPMs starting with the modeling of their operational process and investigating their influence on distribution system operations. Building upon these discussions a deterministic optimization model is established to address the corresponding challenges. Furthermore a two-stage stochastic planning model is proposed to determine optimal locations and sizes of HPMs in distribution systems accounting for uncertainties. The objective of the twostage stochastic planning model is to minimize the distribution system’s operational costs plus the investment costs of the HPM subject to power flow constraints. To tackle the stochastic nature of photovoltaic power a data-driven algorithm is introduced to cluster historical data into representative scenarios effectively reducing the planning model’s scale. To ensure an efficient solution a Benders’ decomposition-based algorithm is proposed which is an iterative method with a fast convergence speed. The proposed model and algorithms are validated using a widely utilized IEEE 33-bus system through numerical experiments demonstrating the optimality of the HPM plan generated by the algorithm. The proposed model and algorithms offer an effective approach for decision-makers in managing uncertainties and optimizing HPM deployment paving the way for sustainable and efficient energy solutions in distribution systems. Sensitivity analysis verifies the optimality of the HPM’s siting and sizing obtained by the proposed algorithm which also reveals immense economic and environmental benefits.
Green with Envy? Hydrogen Production in a Carbon-constrained World
Jan 2024
Publication
Hydrogen is widely recognized as a key component of a decarbonized global energy system serving as both a fuel source and an energy storage medium. While current hydrogen production relies almost entirely on emissionsintensive processes two low-emissions production pathways – natural-gas-derived production combined with carbon capture and storage and electrolysis using carbon-free electricity – are poised to change the global supply mix. Our study assesses the financial conditions under which natural-gas-based hydrogen production combined with carbon capture and storage would be available at a cost lower than hydrogen produced through electrolysis and the degree to which these conditions are likely to arise in a transition to a net-zero world. We also assess the degree to which emissions reduction policies namely carbon pricing and carbon capture and storage tax credits affect the relative costs of hydrogen production derived from different pathways. We show that while carbon pricing can improve the relative cost of both green and blue hydrogen production compared with unabated grey hydrogen targeted tax credits favouring either blue or green hydrogen explicitly may increase emissions and/or increase the costs of the energy transition.
Synergy of Carbon Capture, Waste Heat Recovery and Hydrogen Production for Industrial Decarbonisation
May 2024
Publication
Industry is the biggest sector of energy consumption and greenhouse gas emissions whose decarbonisation is essential to achieve the Sustainable Development Goals. Carbon capture energy efficiency improvement and hydrogen are among the main strategies for industrial decarbonization. However novel approaches are needed to address the key requirements and differences between sectors to ensure they can work together to well integrate industrial decarbonisation with heat CO2 and hydrogen. The emerging Calcium Looping (CaL) is attracting interest in designing CO2-involved chemical processes for heat capture and storage. The reversibility relatively high-temperature (600 to 900 ◦C) and high energy capacity output as well as carbon capture function make CaL well-fit for CO2 capture and utilisation and waste heat recovery from industrial flue gases. Meanwhile methane dry reforming (MDR) is a promising technology to produce blue hydrogen via the consumption of two major greenhouse gases i.e. CO2 and CH4. It has great potential to combine the two technologies to achieve insitu CO2 utilization with multiple benefits. In this paper progresses on the reaction conditions and performance of CaL for CO2 capture and industrial waste heat recovery as well as MDR were screened. Secondly recent approaches to CaL-MDR synergy have been reviewed to identify the advantages. The major challenges in such a synergistic process include MDR catalyst deactivation CaL sorbents sintering and system integration. Thirdly the paper outlooks future work to explore a rational design of a multi-function system for the proposed synergistic process.
PEM Water Electrolysis for Hydrogen Production: Fundamentals, Advances, and Prospects
Jun 2022
Publication
Hydrogen as a clean energy carrier is of great potential to be an alternative fuel in the future. Proton exchange membrane (PEM) water electrolysis is hailed as the most desired technology for high purity hydrogen production and self-consistent with volatility of renewable energies has ignited much attention in the past decades based on the high current density greater energy efficiency small mass-volume characteristic easy handling and maintenance. To date substantial efforts have been devoted to the development of advanced electrocatalysts to improve electrolytic efficiency and reduce the cost of PEM electrolyser. In this review we firstly compare the alkaline water electrolysis (AWE) solid oxide electrolysis (SOE) and PEM water electrolysis and highlight the advantages of PEM water electrolysis. Furthermore we summarize the recent progress in PEM water electrolysis including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts in the acidic electrolyte. We also introduce other PEM cell components (including membrane electrode assembly current collector and bipolar plate). Finally the current challenges and an outlook for the future development of PEM water electrolysis technology for application in future hydrogen production are provided.
Techno-economic Viability of Decentralised Solar Photovoltaic-based Green Hydrogen Production for Sustainable Energy Transition in Ghana
Feb 2024
Publication
Transition to a sustainable energy supply is essential for addressing the challenges of climate change and achieving a low-carbon future. Green hydrogen produced from solar photovoltaic (PV) systems presents a promising solution in Ghana where energy demands are increasing rapidly. The levelized cost of hydrogen (LCOH) is considered a critical metric to evaluate hydrogen production techniques cost competitiveness and economic viability. This study presents a comprehensive analysis of LCOH from solar PV systems. The study considered a 5 MW green hydrogen production plant in Ghana’s capital Accra as a proposed system. The results indicate that the LCOH is about $9.49/kg which is comparable to other findings obtained within the SubSaharan Africa region. The study also forecasted that the LCOH for solar PV-based hydrogen produced will decrease to $5–6.5/kg by 2030 and $2–2.5/kg by 2050 or lower making it competitive with fossil fuel-based hydrogen. The findings of this study highlight the potential of green hydrogen as a sustainable energy solution and its role in driving the country’s net-zero emissions agenda in relation to its energy transition targets. The study’s outcomes are relevant to policymakers researchers investors and energy stakeholders in making informed decisions regarding deploying decentralised green hydrogen technologies in Ghana and similar contexts worldwide.
Utilization of Hydro Sources in Canada for Green Hydrogen Fuel Production
Oct 2024
Publication
The present study comprehensively examines the application of hydro wave tidal undersea current and geothermal energy sources of Canada for green hydrogen fuel production. The estimated potential capacity of each province is derived from official data and acceptable assumptions and is subject to discussion and evaluation in the context of a viable hydrogen economy. According to the findings the potential for green hydrogen generation in Canada is projected to be 48.86 megatons. The economic value of the produced green hydrogen results in an equivalent of 21.30 billion US$. The top three provinces with the highest green hydrogen production potential using hydro resources including hydro wave tidal undersea current and geothermal are Alberta Quebec and British Columbia with 26.13 Mt 7.34 Mt and 4.39 Mt respectively. Quebec is ranked first by only considering the marine sources including 4.14 Mt with hydro 1.46 Mt with wave 0.27 Mt underwater current and 1.45 Mt with tidal respectively. Alberta is listed as the province with the highest capacity for hydrogen production from geothermal energy amounting up to 26.09 Mt. The primary objective is to provide comprehensive hydrogen maps for each province in Canada which will be based on the identified renewable energy potential and the utilization of electrolysers. This may further be examined within the framework of the prevailing policies implemented by local communities and officials in order to develop a sustainable energy plan for the nation.
Critical Review of Life Cycle Assessment of Hydrogen Production Pathways
May 2024
Publication
In light of growing concerns regarding greenhouse gas emissions and the increasingly severe impacts of climate change the global situation demands immediate action to transition towards sustainable energy solutions. In this sense hydrogen could play a fundamental role in the energy transition offering a potential clean and versatile energy carrier. This paper reviews the recent results of Life Cycle Assessment studies of different hydrogen production pathways which are trying to define the routes that can guarantee the least environmental burdens. Steam methane reforming was considered as the benchmark for Global Warming Potential with an average emission of 11 kgCO2eq/kgH2. Hydrogen produced from water electrolysis powered by renewable energy (green H2 ) or nuclear energy (pink H2 ) showed the average lowest impacts with mean values of 2.02 kgCO2eq/kgH2 and 0.41 kgCO2eq/kgH2 respectively. The use of grid electricity to power the electrolyzer (yellow H2 ) raised the mean carbon footprint up to 17.2 kgCO2eq/kgH2 with a peak of 41.4 kgCO2eq/kgH2 in the case of countries with low renewable energy production. Waste pyrolysis and/or gasification presented average emissions three times higher than steam methane reforming while the recourse to residual biomass and biowaste significantly lowered greenhouse gas emissions. The acidification potential presents comparable results for all the technologies studied except for biomass gasification which showed significantly higher and more scattered values. Regarding the abiotic depletion potential (mineral) the main issue is the lack of an established recycling strategy especially for electrolysis technologies that hamper the inclusion of the End of Life stage in LCA computation. Whenever data were available hotspots for each hydrogen production process were identified.
A Parametric Study on In-situ Hydrogen Production from Hydrocarbon Reservoirs - Effect of Reservoir and Well Properties
Jul 2024
Publication
Energy transition is a key driver to combat climate change and achieve zero carbon future. Sustainable and costeffective hydrogen production will provide valuable addition to the renewable energy mix and help minimize greenhouse gas emissions. This study investigates the performance of in-situ hydrogen production (IHP) process using a full-field compositional model as a precursor to experimental validation The reservoir model was simulated as one geological unit with a single point uniform porosity value of 0.13 and a five-point connection type between cell to minimize computational cost. Twenty-one hydrogen forming reactions were modelled based on the reservoir fluid composition selected for this study. The thermodynamic and kinetic parameters for the reactions were obtained from published experiments due to the absence of experimental data specific to the reservoir. A total of fifty-four simulation runs were conducted using CMG STARS software for 5478 days and cumulative hydrogen produced for each run was recorded. Results generated were then used to build a proxy model using Box-Behnken design of experiment method and Support Vector Machine with RBF kernel. To ascertain accuracy of the proxy models analysis of variance (ANOVA) was conducted on the variables. The average absolute percentage error between the proxy model and numerical simulation was calculated to be 10.82%. Optimization of the proxy model was performed using genetic algorithm to maximize cumulative hydrogen produced. Based on this optimized model the influence of porosity permeability well location injection rate and injection pressure were studied. Key results from this study reveals that lower permeability and porosity reservoirs supports more hydrogen yield injection pressure had a negligible effect on hydrogen yield and increase in oxygen injection rate corelated strongly with hydrogen production until a threshold value beyond which hydrogen yield decreased. The framework developed in the study could be used as tool to assess candidate reservoirs for in-situ hydrogen production.
Hydrogen Production from Low-quality Water: Challenges and Perspectives
Sep 2022
Publication
The Next Generation EU plan fosters the development of a large capacity for hydrogen generation. However water and energy resources are strictly connected to an indissoluble nexus. For that water electrolysis may counteract the coexistence of two primary UNO Sustainable Development Goals humankind must face to achieve a prosperous and equal society namely SDG 7 (Affordable access to renewable energy sources) and SDG 6 (clean water). To design innovative energy systems implementing hydrogen as an efficient and sustainable vector water resources need careful management and energy use ought not to compete with freshwater delivery. Therefore the present study reviews the technologies available for hydrogen production and their fitness to water quality standards. Among the feeding possibilities to be scrutinized wastewaters and saline waters are worth attention. Each source of water asks for a specific design and management of the water treatment pre-process. Since these steps are energydemanding in some applications the direct use of low-quality water to produce hydrogen may be envisaged. An example is the direct feeding of seawater to Solid Oxide Electrolysers (SOE). SOEs appear more promising than commercial low-temperature electrolysis systems since water steam production integrates the function of preliminary water treatment.
Impact of Impurities on Water Electrolysis: A Review
Feb 2023
Publication
Low temperature water electrolysers such as Proton Exchange Membrane Water Electrolysers (PEMWEs) Alkaline Water Electrolysers (AWEs) and Anion Exchange Membrane Water Electrolysers (AEMWEs) are known to be sensitive to water quality with a range of common impurities impacting performance hydrogen quality and device lifetime. Purification of feed water adds to cost operational complexity and design limitations while failure of purification equipment can lead to degradation of electrolyser materials and components. Increased robustness to impurities will offer a route to longer device lifetimes and reduced operating costs but understanding of the impact of impurities and associated degradation mechanisms is currently limited. This critical review offers for the first time a comprehensive overview of relevant impurities in operating electrolysers and their impact. Impurity sources degradation mechanisms characterisation techniques water purification technologies and mitigation strategies are identified and discussed. The review generalises already reported mechanisms proposes new mechanisms and provides a framework for consideration of operational implications.
Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting
Oct 2012
Publication
Hydrogen is the ideal fuel for the future because it is clean energy efficient and abundant in nature. While various technologies can be used to generate hydrogen only some of them can be considered environmentally friendly. Recently solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies a review of photocatalytic water splitting over titania and non-titania based photocatalysts a discussion of the types of photocatalytic water-splitting approaches and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here the development of highly stable visible–light-active photocatalytic materials and the design of efficient low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.
Development of a Novel Thermochemical Cycle Without Electrolysis Step to Produce Hydrogen
Jan 2025
Publication
This study presents a new three-step Cu-Cl cycle that can operate with heat input without electrolysis. While the sensitivity analyses of the system are performed to evaluate the system performance through the Aspen Plus thermodynamic analyses of the system are performed with energetic and exergetic approaches. The highest exergy destruction among the components in the system was the decomposition reactor with a rate of 50.6%. Furthermore the energy and exergy values for the simulated system to produce 1 mol of hydrogen were determined by calculating the energy requirements of all components in the system. The total energy required for the system to generate 1 mol of hydrogen is calculated to be 997.81 kJ/mol H2. It was found that the component that required the most energy 504.76 kJ/mol H2 in the system was the decomposition reactor. Moreover the overall energy and exergy efficiencies are calculated to be 72.50% and 46.70% respectively.
Waste to Sustainable Biohydrogen Production Via Photo-Fermentation and Biophotolysis - A Systematic Review
Oct 2021
Publication
Considering the environmental challenges humanity faces in the 21st century it is obvious that there is an enormous need for change of the global energy map. Under these circumstances new energy sources and intermediates must be considered as options to limit the greenhouse gases emissions and mitigate climate crisis. Biohydrogen production is one of the most appealing options due to hydrogen’s multiple applications and zero emissions as a fuel to empower a future hydrogen circular economy. In this review article we focus on two methods that are not widely used at industrial scale but have many future possibilities and growth margins: (a) photo-fermentation and (b) bio photolysis. Both methods are light dependent and need photobioreactors to function and produce significant amounts of biohydrogen. Based on an extensive literature search and systemic analysis of the findings presentation of the different reactants operating conditions and biohydrogen productions key factors and effecting parameters were discussed. Temperature pH light intensity and photobioreactor operation and design are some of the most significant factors that define the biohydrogen production rates and yields. Innovative solutions and approaches are presented including biotechnological and genetic engineering modifications to microorganisms as well as combinations of some hybrid biohydrogen producing methods especially dark and photo fermentation. For implementing a biohydrogen circular-economy different wastes were explored as potential feedstocks and overcoming of major bottlenecks that biophotolysis and photo-fermentation face in the transition to a sustainable biohydrogen economy were discussed.
Off-grid Hydrogen Production: Analysing Hydrogen Producton and Supply Costs Considering Country-specifics and Transport to Europe
Jul 2024
Publication
Hydrogen plays a pivotal role in transitioning to CO2-free energy systems yet challenges regarding costs and sourcing persist in supplying Europe with renewable hydrogen. Our paper proposes a simulation-based approach to determine cost-optimal combinations of electrolyser power and renewable peak power for off-grid hydrogen production considering location and energy source dependencies. Key findings include easy estimation of Levelized Costs of Hydrogen (LCOH) and optimal plant sizing based on the regional energy yield and source. Regional investment risks influence the LCOH by 7.9 % per 1 % change of the Weighted Average Cost of Capital. In Central Europe (Austria) hydrogen production costs range from 7.4 €/kg to 8.6 €/kg whereas regions like Chile exhibit cheaper costs at 5.1 €/kg to 6.8 €/kg. Despite the favourable energy yields in regions like Chile or the UAE domestically produced hydrogen can be cost-competitive when location-specific risks and transport costs are taken into account. This underlines the critical role of domestic hydrogen production and cost-effective hydrogen transport for Europe’s future hydrogen supply.
An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation: A Comprehensive Analysis
Mar 2024
Publication
Dayana Nascimento Dari,
Isabelly Silveira Freitas,
Francisco Izaias da Silva Aires,
Rafael Leandro Fernandes Melo,
Kaiany Moreira dos Santos,
Patrick da Silva Sousa,
Paulo Gonçalves de Sousa Junior,
Antônio Luthierre Gama Cavalcante,
Francisco Simão Neto,
Jessica Lopes da Silva,
Érico Carlos de Castro,
Valdilane Santos Alexandre,
Ana M. da S. Lima,
Juliana de França Serpa,
Maria C. M. de Souza and
José C. S. dos Santos
Fermentation is an oxygen-free biological process that produces hydrogen a clean renewable energy source with the potential to power a low-carbon economy. Bibliometric analysis is crucial in academic research to evaluate scientific production identify trends and contributors and map the development of a field providing valuable information to guide researchers and promote scientific innovation. This review provides an advanced bibliometric analysis and a future perspective on fermentation for hydrogen production. By searching WoS we evaluated and refined 62087 articles to 4493 articles. This allowed us to identify the most important journals countries institutions and authors in the field. In addition the ten most cited articles and the dominant research areas were identified. A keyword analysis revealed five research clusters that illustrate where research is progressing. The outlook indicates that a deeper understanding of microbiology and support from energy policy will drive the development of hydrogen from fermentation.
Synergizing Photo-Thermal H2 and Photovoltaics into a Concentrated Sunlight Use
Apr 2020
Publication
Solar hydrogen and electricity are promising high energy-density renewable sources. Although photochemistry or photovoltaics are attractive routes special challenge arises in sunlight conversion efficiency. To improve efficiency various semiconductor materials have been proposed with selective sunlight absorption. Here we reported a hybrid system synergizing photo-thermochemical hydrogen and photovoltaics harvesting full-spectrum sunlight in a cascade manner. A simple suspension of Au-TiO2 in water/methanol serves as a spectrum selector absorbing ultraviolet-visible and infrared energy for rapid photo-thermochemical hydrogen production. The transmitted visible and near-infrared energy fits the photovoltaic bandgap and retains the high efficiency of a commercial photovoltaic cell under different solar concentration values. The experimental design achieved an overall efficiency of 4.2% under 12 suns solar concentration. Furthermore the results demonstrated a reduced energy loss in full-spectrum energy conversion into hydrogen and electricity. Such simple integration of photo-thermochemical hydrogen and photovoltaics would create a pathway toward cascading use of sunlight energy.
Techno-economic Analysis of Green Hydrogen Production and Electric Vehicle Charging Using Redundant Energy on a Solar Photovoltaic Mini-grid
Nov 2024
Publication
The trajectory of the world’s energy use has moved towards the use of renewable energy to increase energy access. Solar energy’s pace of growth as a result of its low cost has resulted in it being used to generate electricity for areas that do not have access to grid electricity. Thus solar photovoltaic mini-grid systems have been deployed in several areas. Over time it has been found that these systems generate a significant amount of redundant energy which translates to low profitability for the mini-grid operators as only a fraction of the system’s capacity is used. This study seeks to investigate the economic feasibility of using this redundant energy for green hydrogen production and electric vehicle charging. The results revealed that both the green hydrogen production and electric vehicle charging are economically viable. Net Present Value Internal Rate of Return and Simple Payback Period obtained for green hydrogen production are $20000 24.6% 9 years while those of the electric vehicle charging are $109625 28.41% 4 years respectively. Over the projects’ lifetime levelised cost of hydrogen and levelised cost of energy for charging are $6.88/kg and $0.23/kWh respectively. Furthermore a sensitivity analysis revealed that the levelised costs for both projects are most sensitive to the plant capacity factor and capital expenditure. The study also shows that the wasted energy of the PV mini-grid could be reduced from as high as 69.95% to nearly 0%. This research underscores the potential of other clean energy technologies to reduce the wasted energy on existing PV systems whiles improving the economic state of mini-grid communities.
Baseload Hydrogen Supply from an Off-grid Solar PV-Wind-Power-Battery-Water Electrolyzer Plant
Feb 2025
Publication
Green hydrogen will play a key role in the transition to a carbon-neutral energy system. This study addresses the challenge of supplying baseload green hydrogen through an integrated off-grid alkaline water electrolyzer (AWE) plant wind and solar photovoltaic (PV) power a battery energy storage system (BESS) and a hydrogen storage system based on salt and rock cavern geologies. The capacities of the components and the hydrogen storage size are optimized simultaneously with the control of the AWE plant to minimize the levelized cost of hydrogen (LCOH2) of the gas supplied. The operation of the system is simulated over 30 years with a 15 min time resolution considering degradation operating expenses and component replacements. Power generation data collected from a wind farm and a solar PV installation both located in southeastern Finland are used for system simulation. A sensitivity analysis exploring different hydrogen demand rates discount rates and installation years is conducted for both systems considering rock and salt caverns providing the optimal configuration for each case. It is found that for the price scenario of the year 2025 for a combined 100 MW AWE and compressor the optimal hydrogen demand rate is 12 kg/min with an LCOH2 of 3.14 e/kg and 2.77 e/kg in systems including rock and salt caverns respectively.
Agrivoltaics, Opportunities for Hydrogen Generation, and Market Developments
Feb 2025
Publication
To achieve deep decarbonization renewable energy generation must be substantially increased. The technologies with the lowest levelized cost of electricity (LCOE) are land-based photovoltaics (PVs) and wind energy. Agri-PVs offer the potential for dual land use combining energy generation with agricultural activities. However the costs of agri-PVs are higher than those of ground-mounted PV. To enhance the competitiveness of agri-PV we investigate the synergies between agri-PVs and hydrogen electrolysis through process simulation. Additionally we analyse current technological developments in agri-PVs based on a market analysis of start-up companies. Our results indicate that the levelized cost of hydrogen (LCOH) can be comparable for agri-PVs and ground-mounted PVs due to the somewhat smoother electricity generation for the same installed capacity. The market analysis reveals the emergence of a technology ecosystem that integrates agri-PVs with next-generation agricultural technologies such as sensors robotics and artificial intelligence (AI) agents along with localized electricity generation forecasting. The integrated agri-PV and hydrogen generation system has significant global scaling potential for renewable energy generation. Furthermore it positively impacts local economies and energy resilience may reduce water scarcity in agriculture and leverages advancements in AI robotics PV and hydrogen generation technologies.
No more items...