Safety
Safety Challenges Related to the Use of Hydrogen-Natural Gas Blends in Gas Turbines
Sep 2023
Publication
In a context of the decarbonization of the power sector the gas turbine manufacturers are expected tohandle and burn hydrogen or hydrogen/natural gas mixtures. This evolution is conceptually simple in order to displace CO2 emissions by H2O in the combustion exhaust but raises potential engineering andsafety related questions. Concerning the safety aspect the flammability domain is wider and the laminar flame speed is higher for hydrogen than for natural gas. As a result handling fuels with increased hydrogen concentration should a priori lead to an increased the risk of flammable cloud formation with air and also increase the potential explosion violence.<br/>A central topic for the gas turbine manufacturer is the quantification of the hydrogen fuel content from which the explosion risk increases significantly when compared with the use of natural gas. This work will be focused on a risk study of the fuel supply piping of a gas turbine in a scenario where mixing between fuel and air would occur. The pipes are a few dozens of meters long and show singularities: elbows connections with other lines … They are operated at high temperature and atmospheric or high pressure.<br/>The paper will first highlight through CFD modelling the impact of increasing hydrogen content in the fuel on the explosion risk based on a geometry representative of a realistic system. Second the quantification of the explosion effects will be addressed. Some elements of the bibliography relative to flame propagation in pipes will be recalled and put in sight of the characteristics of the industrial case. Finally a CFD model proposed recently for accounting for methane or hydrogen flames propagating in long open steel tubes was used to assess a hydrogen fuel content from which the flame can strongly accelerate and generate significative pressure effects for a flammable mixture initially at atmospheric conditions.
Review of the Status and Prospects of Fiber Optic Hydrogen Sensing Technology
Aug 2023
Publication
With the unprecedented development of green and renewable energy sources the proportion of clean hydrogen (H2 ) applications grows rapidly. Since H2 has physicochemical properties of being highly permeable and combustible high-performance H2 sensors to detect and monitor hydrogen concentration are essential. This review discusses a variety of fiber-optic-based H2 sensor technologies since the year 1984 including: interferometer technology fiber grating technology surface plasma resonance (SPR) technology micro lens technology evanescent field technology integrated optical waveguide technology direct transmission/reflection detection technology etc. These technologies have been evolving from simply pursuing high sensitivity and low detection limits (LDL) to focusing on multiple performance parameters to match various application demands such as: high temperature resistance fast response speed fast recovery speed large concentration range low cross sensitivity excellent long-term stability etc. On the basis of palladium (Pd)-sensitive material alloy metals catalysts or nanoparticles are proposed to improve the performance of fiberoptic-based H2 sensors including gold (Au) silver (Ag) platinum (Pt) zinc oxide (ZnO) titanium oxide (TiO2 ) tungsten oxide (WO3 ) Mg70Ti30 polydimethylsiloxane (PDMS) graphene oxide (GO) etc. Various microstructure processes of the side and end of optical fiber H2 sensors are also discussed in this review.
CFD Simulation and ANN Prediction of Hydrogen Leakage and Diffusion Behavior in a Hydrogen Refuelling Station
Sep 2023
Publication
Hydrogen refuelling stations are an important part of the infrastructure for promoting the hydrogen economy. Since hydrogen is a flammable and explosive gas hydrogen released from high-pressure hydrogen storage equipment in hydrogen refuelling stations will likely cause combustion or explosion accidents. Studying high-pressure hydrogen leakage in hydrogen refuelling stations is a prerequisite for promoting hydrogen fuel cell vehicles and hydrogen refuelling stations. In this work an actual-size hydrogen refuelling station model was established on the ANSYS FLUENT software platform. The computational fluid dynamics (CFD) models for hydrogen leakage simulation were validated by comparing the simulation results with experimental data in the literature. The effects of ambient wind speed wind direction leakage rate and leakage direction on the diffusion behaviors of the released hydrogen were investigated. The spreading distances of the flammable hydrogen cloud were predicted using an artificial neural network for horizontal leakage. The results show that the leak direction strongly affected the flammable cloud flow. The ambient wind speed has complicated effects on spreading the flammable cloud. The wind makes the flammable cloud move in certain directions and the higher wind speed accelerates the diffusion of the flammable gas in the air. The results of the study can be used as a reference for the study of high-pressure hydrogen leakage in hydrogen refuelling stations.
Fuel Cell Vehicle Hydrogen Emissions Testing
Sep 2023
Publication
The NREL Hydrogen Sensor Laboratory is comprised of researchers dedicated to furthering hydrogen sensor technology and detection methodology. NREL has teamed up with researchers at Environment and Climate Change Canada (ECCC) and Transport Canada (TC) to conduct research to quantify hydrogen emissions from Fuel Cell Electric Vehicles (FCEV). Test protocols will have a large effect on monitoring and regulating the hydrogen emissions from FCEVs. How emissions are tested will play an important role when understanding the safety and environmental implications of using FCEVs. NREL Sensor Laboratory personnel have partnered with other entities to conduct multiple variations of emissions testing for FCEVs. This experimentation includes testing different models of FCEVs under various driving conditions while monitoring the hydrogen concentration of the exhaust using several different test methods and apparatus. Researchers look to support regulatory bodies by providing useful data that can support more consistent and relevant safety and environmental standards. We plan to present on the current test methods and results from recent emissions measurements at ECCC.
Energy Transition Technology Comes With New Process Safety Challenges and Risks
Jul 2023
Publication
This paper intends to give an impression of new technologies and processes that are in development for application to achieve decarbonization and about which less or no experience on associated hazards exists in the process industry. More or less an exception is hydrogen technology because its hazards are relatively known and there is industry experience in handling it safely but problems will arise when it is produced stored and distributed on a large scale. So when its use spreads to communities and it becomes as common as natural gas now measures to control the risks will be needed. And even with hydrogen surprise findings have been shown lately e.g. its BLEVE behavior when in a liquified form stored in a vessel heated externally. Substitutes for hydrogen are not without hazard concern either. The paper will further consider the hazards of energy storage in batteries and the problems to get those hazards under control. Relatively much attention will be paid to the electrification of the process industry. Many new processes are being researched which given green energy will be beneficial to reduce greenhouse gases and enhance sustainability but of which hazards are rather unknown. Therefore as last chapter the developments with respect to the concept of hazard identification and scenario definition will be considered in quite detail. Improvements in that respect are also being possible due to the digitization of the industry and the availability of data and considering the entire life cycle all facilitated by the data model standard ISO 15926 with the scope of integration of life-cycle data for process plants including oil and gas production facilities. Conclusion is that the new technologies and processes entail new process and personal hazards and that much effort is going into renewal but safety analyses are scarce. Right in a period of process renewal attention should be focused on possibilities to implement inherently safer design.
Enhancing Wind Energy Efficiency: A Study on the Power Output of Shrouded Wind Turbines for a Hydrogen Storage System
Mar 2025
Publication
This study presents a simulation and analysis of a shrouded wind turbine system integrated with a proton exchange membrane electrolyzer (PEME) for hydrogen production. The novel aspect of this research lies in the use of an aerodynamic blade shroud to enhance the wind turbine's performance particularly at low wind speeds. The addition of the aerodynamic shroud increases the power output by up to 68% at a wind speed of 2.5 m/s compared to a conventional wind turbine. Additionally the effect of radial clearance between the shroud and turbine blades is explored showing that a smaller clearance significantly improves power generation. The study also investigates the impact of blade shape (NACA 2408 and NACA 4418) on performance with results indicating a 53% increase in power output for the NACA 4418 design compared to the unshrouded turbine. The influence of the aerodynamic blade shroud on PEME energy density and hydrogen production efficiency is discussed demonstrating how increasing wind turbine power output leads to higher current density in the electrolyzer which while increasing hydrogen production slightly reduces thermal and exergy efficiencies. To counteract this the study suggests using multiple PEME stacks in parallel to enhance both efficiency and hydrogen output.
Inspection of Hydrogen Transport Equipment: A Data-driven Approach to Predict Fatigue Degradation
Jul 2024
Publication
Hydrogen is an environmentally friendly fuel that can facilitate the upcoming energy transition. The development of an extensive infrastructure for hydrogen transport and storage is crucial. However the mechanical properties of structural materials are significantly degraded in H2 environments leading to early component failures. Pipelines are designed following defect-tolerant principles and are subjected to periodic pressure fluctuations. Hence these systems are potentially prone to fatigue degradation often accelerated in pressurized hydrogen gas. Inspection and maintenance activities are crucial to guarantee the integrity and fitness for service of this infrastructure. This study predicts the severity of hydrogen-enhanced fatigue in low-alloy steels commonly employed for H2 transport and storage equipment. Three machine-learning algorithms i.e. Linear Model Deep Neural Network and Random Forest are used to categorize the severity of the fatigue degradation. The models are critically compared and the best-performing algorithm are trained to predict the Fatigue Acceleration Factor. This approach shows good prediction capability and can estimate the fatigue crack propagation in lowalloy steels. These results allow for estimating the probability of failure of hydrogen pipelines thus facilitating the inspection and maintenance planning.
Design of Long-Life Wireless Near-Field Hydrogen Gas Sensor
Feb 2024
Publication
A compact wireless near-field hydrogen gas sensor is proposed which detects leaking hydrogen near its source to achieve fast responses and high reliability. A semiconductor-type sensing element is implemented in the sensor which can provide a significant response in 100 ms when stimulated by pure hydrogen. The overall response time is shortened by orders of magnitude compared to conventional sensors according to simulation results which will be within 200 ms compared with over 25 s for spatial concentration sensors under the worst conditions. Over 1 year maintenance intervals are enabled by wireless design based on the Bluetooth low energy protocol. The average energy consumption during a single alarm process is 153 µJ/s. The whole sensor is integrated on a 20 × 26 mm circuit board for compact use.
Effect of Methane Addition on Transition to Detonation in Hydrogen-Air Mixtures Due to Shock Wave Focussing in a 90 - Degree Corner
Sep 2023
Publication
The main purpose of this work is to investigate the influence of methane addition in methane-hydrogen-air mixture (φ = 0.8 – 1.6) on the critical conditions for transition to detonation in a 90-deg wedge corner. Similar to hydrogen-air mixtures investigated previously [1] methane-hydrogen-air mixtures results showed three ignition modes weak ignition followed by deflagration with ignition delay time higher than 1 μs strong ignition with instantaneous transition to detonation and third with deflagrative ignition and delayed transition to detonation. Methane addition caused an increase in the range of 3.25 – 5.03% in the critical shock wave velocity necessary for transition to detonation for all mixtures considered. For example in stoichiometric mixture with 5% methane in fuel (95% hydrogen in fuel) in air the transition to detonation velocity was approx. 752 m/s (an increase of 37 m/s from hydrogen-air) corresponding to M = 1.89 (an increase of 0.14 from hydrogen-air) and 75.7% (an increase of 4.7% from hydrogen-air) of speed of sound in products. Also similar to hydrogen-air mixture the transition to detonation velocity increased for leaner and richer mixture. Moreover it was observed that methane addition in general increased the pressure limit at the corner necessary for transition to detonation.
Experiments and Simulations of Large Scale Hydrogen-Nitrogen-Air Gas Explosions for Nuclear and Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen safety is a general concern because of the high reactivity compared to hydrocarbon-based fuels. The strength of knowledge in risk assessments related to the physical phenomena and the ability of models to predict the consequence of accidental releases is a key aspect for the safe implementation of new technologies. Nuclear safety considers the possibility of accidental leakages of hydrogen gas and subsequent explosion events in risk analysis. In many configurations the considered gaseous streams involve a large fraction of nitrogen gas mixed with hydrogen. This work presents the results of a large scale explosion experimental campaign for hydrogen-nitrogen-air mixtures. The experiments were performed in a 50 m3 vessel at Gexcon’s test site in Bergen Norway. The nitrogen fraction the equivalence ratio and the congestion level were investigated. The experiments are simulated in the FLACS-CFD software to inform about the current level of conservatism of the predictions for engineering application purposes. The study shows the reduced overpressure with nitrogen added to hydrogen mixtures and supports the use of FLACS-CFD-based risk analysis for hydrogen-nitrogen scenarios.
Towards Safer Hydrogen Refuelling Stations: Insights from Computational Fluid Dynamics LH2 Leakage
May 2024
Publication
The transition to a sustainable future with hydrogen as a key energy carrier necessitates a comprehensive understanding of the safety aspects of hydrogen including liquid hydrogen (LH₂). Hence this study presents a detailed computational fluid mechanics analysis to explore accidental LH₂ leakage and dispersion in a hydrogen refuelling station under varied conditions which is essential to prevent fire and explosion. The correlated impact of influential parameters including wind direction wind velocity leak direction and leak rate were analysed. The study shows that hydrogen dispersion is significantly impacted by the combined effect of wind direction and surrounding structures. Additionally the leak rate and leak direction have a significant effect on the development of the flammable cloud volume (FCV) which is critical for estimating the explosion hazards. Increasing wind velocity from 2 to 4 m/s at a constant leak rate of 0.06 kg/s results in an 82% reduction in FCV. The minimum FCV occurs when leak and wind directions oppose at 4 m/s. The most critical situation concerning FCV arises when the leak and wind directions are perpendicular with a leak rate of 0.06 kg/s and a wind velocity of 2 m/s. These findings can aid in the development of optimised sensing and monitoring systems and operational strategies to reduce the risk of catastrophic fire and explosion consequences.
Leakage Rates of Hydrogen-methane Gas Blends under Varying Pressure Conditions
Nov 2024
Publication
Integration of hydrogen into the existing natural gas infrastructure is considered a potential pathway that can accelerate the incorporation of hydrogen into the energy sector. While blending renewable hydrogen with natural gas offers advantages such as reduced carbon intensity and the ability to utilize existing infrastructure for hydrogen storage and transportation there are several concerns including leakage and associated issues. Un derstanding the behavior of hydrogen blended with natural gas in the existing infrastructure is crucial to ensure safe and efficient integration. In this study the leakage rates of mixtures of hydrogen and methane at different molar concentrations (5% 10% 20% and 50% hydrogen) through both precision machined orifices and com mon pipe fitting threads were investigated. The experiments showed that the leakage rates of these mixtures increased as the hydrogen content increased; however gas chromatography (GC) analysis showed that hydrogen did not leak preferentially at a greater rate than methane. The results indicate that mixing hydrogen with methane can increase the volume of gas leakage under the same pressure conditions. These findings suggest that mixing hydrogen with natural gas may result in increased volumetric flow rate of gas leaks but hydrogen alone does not leak preferentially to methane.
Preliminary Assessment of a Hydrogen Farm Including Health and Safety and Capacity Needs
Dec 2024
Publication
The safety engineering design of hydrogen systems and infrastructure worker education and training regulatory compliance and engagement with other stakeholders are significant to the viability and public acceptance of hydrogen farms. The only way to ensure these are accomplished is for the field of hydrogen safety engineering (HSE) to grow and mature. HSE is described as the application of engineering and scientific principles to protect the environment property and human life from the harmful effects of hydrogen-related mishaps and accidents. This paper describes a whole hydrogen farm that produces hydrogen from seawater by alkaline and proton exchange membrane electrolysers then details how the hydrogen gas will be used: some will be stored for use in a combined-cycle gas turbine some will be transferred to a liquefaction plant and the rest will be exported. Moreover this paper describes the design framework and overview for ensuring hydrogen safety through these processes (production transport storage and utilisation) which include legal requirements for hydrogen safety safety management systems and equipment for hydrogen safety. Hydrogen farms are large-scale facilities used to create store and distribute hydrogen which is usually produced by electrolysis using renewable energy sources like wind or solar power. Since hydrogen is a vital energy carrier for industries transportation and power generation these farms are crucial in assisting the global shift to clean energy. A versatile fuel with zero emissions at the point of use hydrogen is essential for reaching climate objectives and decarbonising industries that are difficult to electrify. Safety is essential in hydrogen farms because hydrogen is extremely flammable odourless invisible and also has a small molecular size meaning it is prone to leaks which if not handled appropriately might cause fires or explosions. To ensure the safe and dependable functioning of hydrogen production and storage systems stringent safety procedures are required to safeguard employees infrastructure and the surrounding environment from any mishaps.
Hydrogen Equipment Enclosure Risk Reduction through Earlier Detection of Component Failures
Sep 2023
Publication
Hydrogen component reliability and the hazard associated with failure rates is a critical area of research for the successful implementation and growth of hydrogen technology across the globe. The research team has partnered to quantify system risk reduction through earlier detection of hydrogen component failures. A model of hydrogen dispersion in a hydrogen equipment enclosure has been developed utilizing experimentally quantified hydrogen component leak rates as inputs. This model provides insight into the impact of hydrogen safety sensors and ventilation on the flammable mass within a hydrogen equipment enclosure. This model also demonstrates the change in safety sensor response time due to detector placement under various leak scenarios. The team looks to improve overall hydrogen system safety through an improved understanding of hydrogen component reliability and risk mitigation methods. This collaboration fits under the work program of IEA Hydrogen Task 43 Subtask E Hydrogen System Safety.
Numerical Modelling of Hydrogen Release and Dispersion
Jul 2021
Publication
Hydrogen is the most abundant element on earth being a low polluting and high efficiency fuel that can be used for various applications such as power generation heating or transportation. As a reaction to climate change authorities are working for determining the most promising applications for hydrogen one of the best examples of crossborder initiative being the IPCEI (Important Project of Common European Interest) on Hydrogen under development at EU level. Given the large interest for future uses of hydrogen special safety measures have to be implemented for avoiding potential accidents. If hydrogen is stored and used under pressure accidental leaks from pressure vessels may result in fires or explosions. Worldwide researchers are investigating possible accidents generated by hydrogen leaks. Special attention is granted to the atmospheric dispersion after the release so that to avoid fires or explosions. The use of consequence modelling software within safety and risk studies has shown its’ utility worldwide. In this paper there are modelled the consequences of the accidental release and atmospheric dispersion of hydrogen from a pressure tank using state-of-the-art QRA software. The simulation methodology used in this paper uses the “leak” model for carrying out discharge calculations. This model calculates the release rate and state of the gas after its expansion to atmospheric pressure. Accidental release of hydrogen is modelled by taking into account the process and meteorological conditions and the properties of the release point. Simulation results can be used further for land use planning or may be used for establishing proper protection measures for surrounding facilities. In this work we analysed two possible accident scenarios which may occur at an imaginary hydrogen refuelling station accidents caused by the leaks of the pressure vessel with diameters of 10 and 20 mm for a pressure tank filled with hydrogen at 35 MPa / 70 MPa. Process Hazard Analysis Software Tool 8.4 has been used for assessing the effects of the scenarios and for evaluating the hazardous extent around the analysed installation. Accident simulation results have shown that the leak size has an important effect on the flammable/explosive ranges. Also the jet fire’s influence distance is strongly influenced by the pressure and actual size of the accidental release.
Functional Resonance Analysis for Emerging Risks in Hydrogen Handling: An Analysis of an Experimental Test
Oct 2024
Publication
Hydrogen is on the rise as a substitute for fossil fuel in the energy sector. While this substitution does not happen dramatically the steady increase in hydrogen related research might be a good indicator of such desire. As it stands there are issues regarding its safe handling and use; consequently the health and safety subsectors observe the situation conspicuously. As we yet to know the behavior of hydrogen in critical situations uncertainties make these tasks prone to emerging risks. Thus hydrogen safety falls under emerging risk studies. Conventional perspective on safety especially regarding the flammable material focuses on calculating the hypothetical risks of failures in system. Resilience Engineering has another perspective as it focuses on normal operations offering new perspectives to tackle emerging risks from a new angle. Born from the heart of Resilience Engineering the Functional Resonance Analysis Method (FRAM) captures sociotechnical systems’ essence in a tangible way. In this study FRAM has been used to model a series of experiments done on hydrogen management to analyze its jet fire. FRAM is used to test whether the method could be suitable to model a system in which emerging risks are present. It is the conclusion of this study that FRAM seems promising in raising risk awareness especially when available data is limited.
X-ray Absorpton Spectroscopy Study on Hydrogen Recombination Catalysts of Palladium Nanoparticles on Titanium Oxide under Wet Condition
Sep 2023
Publication
Hydrogen recombination catalyst is useful tool for reducing hydrogen in closed area. The catalyst is known to be poisoned under wet condition in long time use. The study is focused on the behavior of pre-oxidized Pd nanoparticle as the hard-used catalyst in high humidity environment by comparison of alumina and titanium oxide supports using in situ X-ray absorption spectroscopy technique. The reduction of surface oxide layer of Pd/TiO2 was promoted by water during hydrogen recombination although the reduction reaction of Pd/Al2O3 was inhibited by water.
Techno-economic Analysis of Underground Hydrogen Storage in Europe
Dec 2023
Publication
Hydrogen storage is crucial to developing secure renewable energy systems to meet the European Union’s 2050 carbon neutrality objectives. However a knowledge gap exists concerning the site-specific performance and economic viability of utilizing underground gas storage (UGS) sites for hydrogen storage in Europe. We compile information on European UGS sites to assess potential hydrogen storage capacity and evaluate the associated current and future costs. The total hydrogen storage potential in Europe is 349 TWh of working gas energy (WGE) with site-specific capital costs ranging from $10 million to $1 billion. Porous media and salt caverns boasting a minimum storage capacity of 0.5 TWh WGE exhibit levelized costs of $1.5 and $0.8 per kilogram of hydrogen respectively. It is estimated that future levelized costs associated with hydrogen storage can potentially decrease to as low as $0.4 per kilogram after three experience cycles. Leveraging these techno-economic considerations we identify suitable storage sites.
IEA TCP Task 43 - Subtask Safety Distances: State of the Art
Sep 2023
Publication
The large deployment of hydrogen technologies for new applications such as heat power mobility and other emerging industrial utilizations is essential to meet targets for CO2 reduction. This will lead to an increase in the number of hydrogen installations nearby local populations that will handle hydrogen technologies. Local regulations differ and provide different safety and/or separation distances in different geographies. The purpose of this work is to give an insight on different methodologies and recommendations developed for hydrogen (mainly) risk management and consequences assessment of accidental scenarios. The first objective is to review available methodologies and to identify the divergent points on the methodology. For this purpose a survey has been launched to obtain the needed inputs from the subtask participants. The current work presents the outcomes of this survey highlighting the gaps and suggesting the prioritization of the actions to take to bridge these gaps.
Experimental Investigation of Hydrogen-Air Flame Propagation in Fire Extinguishing Foam
Sep 2023
Publication
An important element of modern firefighting is sometimes the use of foam. After the use of extinguishing foam on vehicles or machinery operated by compressed gases it is conceivable that masses of foam were enriched by escaping fuel gas. Furthermore new foam creation enriched with a high level of fuel gas from the deposed foam solution becomes theoretically possible. The aim of this study was to carry out basic experimental investigations on the combustion of water-based H2/air foam. Ignition tests were carried out in a transparent and vertically oriented cylindrical tube (d = 0.09 m; 1.5 m length) and a rectangular thin layer channel (0.02 m x 0.2 m; 2 m length). Additionally results from larger scale tests performed inside a pool (0.30 m x 1 m x 2 m) are presented. All ducts are semi-confined and a foam generator fills the ducts from below with the defined foam. The foams vary in type and concentration of the foaming agent and hydrogen concentration. The expansion ratio of the combustible foam is in the range of 20 to 50 and the investigated H2-concentrations vary from 8 to 70 % H2 in air. High-speed imaging is used to observe the combustion and determine flame velocities. The study shows that foam is flammable over a wide range of H2-concentrations from 9 to 65 % H2 in air. For certain H2/air-mixtures an abrupt flame acceleration is observed. The velocity of combustion increases rapidly by an order of magnitude and reaches velocities of up to 80 m/s.
No more items...