1900

Numerical Evaluation of Terrain Landscape Influence on Hydrogen Explosion Consequences

Abstract

The aim of this study is to assess numerically the influence of terrain landscape on the distribution of probable harmful consequences to personnel of hydrogen fueling station caused by an accidentally released and exploded hydrogen. In order to extract damaging factors of the hydrogen explosion wave (maximum overpressure and impulse of pressure phase), a three-dimensional mathematical model of gas mixture dynamics with chemical interaction is used. It allows controlling current pressure in every local point of actual space taking into account complex terrain. This information is used locally in every computational cell to evaluate the conditional probability of such consequences on human beings as ear-drum rupture and lethal ones on the basis of probit analysis. In order to use this technique automatically during the computational process, the tabular dependence ""probit-functionimpact probability"" is replaced by a piecewise cubic spline. To evaluate the influence of the landscape profile on the non-stationary three-dimensional overpressure distribution above the earth surface near an epicenter of accidental hydrogen explosion a series of computational experiments with different variants of the terrain is carried out. Each variant differs in the level of mutual arrangement of the explosion epicenter and the places of possible location of personnel. Two control points with different distances from the explosion epicenter are considered. Diagrams of lethal and ear-drum rupture conditional probabilities are build to compare different variants of landscape profile. It is found that the increase or decrease in the level of the location of the control points relative to the level of the epicenter of the explosion significantly changes the scale of the consequences in the actual zone around the working places and should be taken into account by the risk managing experts at the stage of deciding on the level of safety at hydrogen fueling stations.

Related subjects: Safety
Countries: Ukraine
Loading

Article metrics loading...

/content/conference3629
2021-09-24
2022-10-03
http://instance.metastore.ingenta.com/content/conference3629
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error