Safety
Safety Cost of a Large Scale Hydrogen System for Photovoltaic Energy Regulation
Sep 2011
Publication
Hydrogen can be used as a buffer for storing intermittent electricity produced by solar plants and/or wind farms. The MYRTE project in Corsica France aims to operate and test a large scale hydrogen facility for regulating the electricity produced by a 560 kWp photovoltaic plant.
Due to the large quantity of hydrogen and oxygen produced and stored (respectively 333 kg and 2654 kg) this installation faces safety issues and safety regulations constraints that can lead to extra costs. These extra costs may concern detectors monitoring barrier equipments that have to be taken into account for evaluating the system‘s total cost.
Relying on the MYRTE example that is an R&D platform the present work consists in listing the whole environmental and safety regulations to be applied in France on both Hydrogen and Oxygen production and storage. A methodology has been developed [1] [2] for evaluating safety extra costs. This methodology takes into account various hydrogen storage technologies (gaseous and solid state) and is applicable to other ways of storage (batteries etc.) to compare them. Results of this work based on a forecast of the operating platform over 20 years can be used to extrapolate and/or optimize future safety costs of next large scale hydrogen systems for further PV or wind energy storage applications.
Due to the large quantity of hydrogen and oxygen produced and stored (respectively 333 kg and 2654 kg) this installation faces safety issues and safety regulations constraints that can lead to extra costs. These extra costs may concern detectors monitoring barrier equipments that have to be taken into account for evaluating the system‘s total cost.
Relying on the MYRTE example that is an R&D platform the present work consists in listing the whole environmental and safety regulations to be applied in France on both Hydrogen and Oxygen production and storage. A methodology has been developed [1] [2] for evaluating safety extra costs. This methodology takes into account various hydrogen storage technologies (gaseous and solid state) and is applicable to other ways of storage (batteries etc.) to compare them. Results of this work based on a forecast of the operating platform over 20 years can be used to extrapolate and/or optimize future safety costs of next large scale hydrogen systems for further PV or wind energy storage applications.
Self-Ignition of Hydrogen Jet Fires By Electrostatic Discharge Induced By Entrained Particulates
Sep 2011
Publication
The potential for particulates entrained in hydrogen releases to generate electrostatic charge and induce electrostatic discharge ignitions was investigated. A series of tests were performed in which hydrogen was released through a 3.75-mm-diameter orifice from an initial pressure of 140 bar. Electrostatic field sensors were used to characterize the electrification of known quantities of iron oxide particulates deliberately entrained in the release. The ignition experiments focused on using charged particulates to induce spark discharges from isolated conductors and corona discharges. A total of 12 ignition events were observed. The results show that electrification of entrained particulates is a viable self-ignition mechanism of hydrogen releases.
Shock Initiated Ignition for Hydrogen Mixtures of Different Concentrations
Sep 2011
Publication
The scenario of ignition of fuels by the passage of shock waves is relevant from the perspective of safety primarily because shock ignition potentially plays an important role in deflagration to detonation transition. Even in one dimension simulation of ignition between a contact surface or a flame and a shock moving into combustible mixture is difficult because of the singular nature of the initial conditions. Indeed initially as the shock starts moving away from the contact surface the region filled with shocked reactive mixture does not exist. In the current work the formulation is transformed using time and length over time as the independent variables. This transformation yields a finite domain from t = 0. In this paper the complete spatial and temporal ignition evolution of hydrogen combustible mixtures of different concentrations is studied numerically. Integration of the governing equations is performed using an Essentially Non-Oscillatory (ENO) algorithm in space and Runge-Kutta in time while the chemistry is modeled by a three-step chain-branching mechanism which appropriately mimics hydrogen combustion.
Numerical Study on Fast Filling of 70 MPA Hydrogen Vehicle Cylinder
Sep 2011
Publication
There will be significant temperature rise within hydrogen vehicle cylinder during the fast filling process. The temperature rise should be controlled under the temperature limit (85 °C) of the structure material (set by ISO/TS 15869) because it may lead to the failure of the structure. In this paper a 2-dimensional axisymmetric computational fluid dynamics (CFD) model for fast filling of 70 MPa hydrogen vehicle cylinder is presented. The numerical simulations are based on the modified standard k − ɛ turbulence model. In addition both the equation of state for hydrogen gas and the thermodynamic properties are calculated by National Institute of Standards and Technology (NIST) database: REFPROP 7.0. The thermodynamic responses of fast filling with different pressure-rise patterns and filling times within type III cylinder have been analyzed in detail.
Regulations and Research on RC&S for Hydrogen Storage Relevant To Transport and Vehicle Issues with Special Focus on Composite Containments
Sep 2011
Publication
Developers interested in high pressure storage of hydrogen for mobile use increasingly rely on composite cylinders for onboard storage or transport of dangerous goods. Thus composite materials and systems deserve special consideration. History gives interesting background information important to the understanding of the current situation as to regulations codes and standards.<br/>Based on this review origins of different regulations for the storage of hydrogen as dangerous good and as propellant for vehicles will be examined. Both categories started out using steel and sometimes aluminium as cylinder material. With composite materials becoming more common a new problem emerged: vital input for regulations on composite pressure systems was initially derived from decades of experience with steel cylinders. As a result both regulatory fields suffer somewhat from this common basis. Only recent developments regarding requirements for composite cylinders have begun to go more and more separate ways. Thus these differences lead to some shortcomings in regulation with respect to composite storage systems.<br/>In principle in spite of separate development these deficits are in both applications very much the same: there are uncertainties in the prediction of safe service life in retesting procedures of composite cylinders and in their intervals. Hence different aspects of uncertainties and relevant approaches to solutions will be explained.
Fire Risk on High-pressure Full Composite Cylinders for Automotive Applications
Sep 2011
Publication
In the event of a fire the TPRD (Thermally activated Pressure Relief Device) prevents the high-pressure full composite cylinder from bursting by detecting high temperatures and releasing the pressurized gas. The current safety performance of both the vessel and the TPRD is demonstrated by an engulfing bonfire test. However there is no requirement concerning the effect of the TPRD release which may produce a hazardous hydrogen flame due to the high flow-rate of the TPRD. It is necessary to understand better the behavior of an unprotected composite cylinder exposed to fire in order to design appropriate protection for it and to be able to reduce the length of any potential hydrogen flame. For that purpose a test campaign was performed on a 36 L cylinder with a design pressure of 70 MPa. The time from fire exposure to the bursting of this cylinder (the burst delay) was measured. The influence of the fire type (partial or global) and the influence of the pressure in the cylinder during the exposure were studied. It was found that the TPRD orifice diameter should be significantly reduced compared to current practice.
Hydrogen Venting Under Variable Flow Conditions
Sep 2011
Publication
Safety distances for hydrogen plumes are currently derived using models developed for hydrocarbon releases. It is well known that hydrogen behaves in a significantly different manner to that of hydrocarbons when released to atmosphere. There are two main aspects involved with the development of safety distances for credible hydrogen releases; the intensity of the thermal radiation from such a plume should it be ignited and the distance downwind from the release point to the point where a flammable mixture with air no longer exists. A number of distinct areas of venting behaviour were investigated; Thermal radiation from ignited plumes from vertical open ended vent pipes Far field radiation measurements for direct comparison with models Thermal radiation from ignited plumes from vertical vent pipes terminating in a T-piece Thermal radiation measurements from ignited hydrogen with a 45 vent termination Hydrogen concentration measurements with a T-piece.
Validation of CFD Models for Hydrogen Fast Filling Simulations
Sep 2011
Publication
High injection pressures are used during the re-fuelling process of vehicle tanks with compressed hydrogen and consequently high temperatures are generated in the tank potentially jeopardizing the system safety. Computational Fluid Dynamics (CFD) tools can help in predicting the temperature rise within vehicle tanks providing complete and detailed 3D information on flow features and temperature distribution. In this framework CFD simulations of hydrogen fast filling at different working conditions are performed and the accuracy of the numerical models is assessed against experimental data for a type 4 tank up to 70 MPa. Sensitivity analyses on the main modelling parameters are carried out in compliance with general CFD Best Practice Guidelines.
Pressure Cycling Of Type 1 Pressure Vessels with Gaseous Hydrogen
Sep 2011
Publication
Type 1 steel pressure vessels are commonly used for the transport of pressurized gases including gaseous hydrogen. In the majority of cases these cylinders experience relatively few pressure cycles over their lifetime perhaps in the hundreds. In emerging markets such as hydrogen-powered industrial trucks hydrogen fuel systems are expected to experience thousands of cycles over just a few year period. This study investigates the fatigue life of Type 1 steel pressure vessels by subjecting full- scale vessels to pressure cycles with gaseous hydrogen between nominal pressure of 3.5 and 43.8 MPa. In addition engineered defects were machined on the inside of several pressure vessels for comparison to fatigue crack growth measurements on materials sectioned from these pressure vessels. As-manufactured pressure vessels have sustained >35000 cycles with failure while vessels with machined defects leaked before bursting after 8000 to 15000 pressure cycles. The measured number of cycles to failure in these pressure vessels is two to three times greater than predicted using conservative methods based on fatigue crack growth rates measured in gaseous hydrogen.
Modelling of Hydrogen Jet Fires Using CFD
Sep 2011
Publication
The computational fluid dynamics (CFD) software FLACS has primarily been developed to model dispersion and explosion phenomena; however models for the simulation of jet fires are under development. The aim is to be able to predict industrial fires efficiently and with good precision. Newly developed models include e.g. flame models for non-premixed flames discrete transfer radiation model as well as soot models. Since the time scales for fire simulations are longer than for explosions the computational speed is important. The recent development of non-compressible and parallel solvers in FLACS may therefore be important to ensure efficiency. Hydrogen flames may be invisible will generate no soot and tend to radiate less than hydrocarbon fuels. Due to high pressure storage the flame lengths can be significant. Simpler jet flame relations can not predict the jet flame interaction with objects and barriers and thus the heat loads on impacted objects. The development of efficient and precise CFD-tools for hydrogen fires is therefore important. In this paper the new models for the simulation of fire are described. These models are currently under development and this manuscript describes the current status of the work. Jet fire experiments performed by Health and Safety Laboratories (HSL) both free jets and impinging jets will also be simulated to evaluate the applicability and validity of the new fire models.
CFD and VR for Risk Communication and Safety Training
Sep 2011
Publication
There are new safety challenges with an increased use of hydrogen e.g. that people may not see dangerous jet flames in case of an incident. Compared to conventional fuels hydrogen has very different characteristics and physical properties and is stored at very high pressure or at very low temperatures. Thus the nature of hazard scenarios will be very different. Consequence modelling of ventilation releases explosions and fires can be used to predict and thus understand hazards. In order to describe the detailed development of a hazard scenario and evaluate ways of mitigation 3D Computational Fluid Dynamics (CFD) models will be required. Even with accurate modelling the communication of risk can be challenging. For this visualization in virtual reality (VR) may be of good help in which the CFD model predictions are presented in a realistic 3D environment with the possibility to include sounds like noise from a high pressure release explosion or fire. In cooperation with Statoil Christian Michelsen Research (CMR) and GexCon have developed the VRSafety application. VRSafety can visualize simulation results from FLACS (and another CFD-tool KFX) in an immersive VR-lab or on a PC. VRSafety can further be used to interactively control and start new CFD-simulations during the sessions. The combination of accurate CFD-modelling visualization and interactive use through VRSafety represents a powerful toolbox for safety training and risk communication to first-responders employees media and other stakeholders. It can also be used for lessons learned sessions studying incidents and accidents and to demonstrate what went wrong and how mitigation could have prevented accidents from happening. This paper will describe possibilities with VRSafety and give examples of use.
Ignition of Hydrogen Jet Fires from High Pressure Storage
Sep 2013
Publication
Highly transient jets from hydrogen high pressure tanks were investigated up to 30 MPa. These hydrogen jets might self-initiate when released from small orifices of high pressure storage facilities. The related effects were observed by high speed video technics including time resolved spectroscopy. Ignition flame head jet velocity flame contours pressure wave propagation reacting species and temperatures were evaluated. The evaluation used video cross correlation method BOS brightness subtraction and 1 dimensional image contraction to obtain traces of all movements. On burst of the rupture disc the combustion of the jet starts close to the nozzle on the outer shell of it at the boundary layer to the surrounding air. It propagates with a deceleration approximated by a drag force of constant value which is obtained by analysing the head velocity. The burning at the outer shell develops to an explosion converting a nearly spherical volume at the jet head the movement of the centroid is nearly unchanged and follows the jet front in parallel. The progress of the nearly spherical explosion could be evaluated on an averaged flame ball radius. An apparent flame velocity could be derived to be about 20 m/s. It seems to increase slightly on the pressure in the tank or the related initial jet momentum. Self-initiation is nearly always achieved especially induced the interaction of shock waves and their reflections from the orifice. The results are compared to thermodynamic calculations and radiation measurements. The combustion process is composed of a shell combustion of the jet cone at the bases with a superimposed explosion of the decelerating jet head volume.
Simulation of DDT in Hydrogen-Air Behind a Single Obstacle
Sep 2011
Publication
Two-dimensional numerical simulations of deflagration-to-detonation transition (DDT) in hydrogen–air mixtures are presented and compared with experiments. The investigated geometry was a 3 m long square channel. One end was closed and had a single obstacle placed 1 m from the end and the other end was open to the atmosphere. The mixture was ignited at the closed end. Experiments and simulations showed that DDT occurred within 1 m behind the obstacle. The onset of detonation followed a series of local explosions occurring far behind the leading edge of the flame in a layer of unburned reactants between the flame and the walls. A local explosion was also seen in the experiments and the pressure records indicated that there may have been more. Furthermore local explosions were observed in the experiments and simulations which did not detonate. The explosions should have sufficient strength and should explode in a layer of sufficient height to result in a detonation. The numerical resolution was 0.5 mm per square cell and further details of the combustion model used are provided in the paper.
Study on the Harm Effect of Liquid Hydrogen Release by Consequence Modeling
Sep 2011
Publication
In this paper the accidental release of hydrogen from cryogenic liquid storage tank and the subsequent consequences are studied including hydrogen cold cloud fire ball jet fire flash fire and vapor cloud explosion. The cold effect thermal effects and explosion overpressures from the above consequences are evaluated using IGC and TNO harm criteria. Results show that for instantaneous releases of liquid hydrogen the sequence of harm effect distances is that vapor cloud explosion>flash fire>cold cloud> fireball. For continuous releases of liquid hydrogen the sequence of harm effect distances is that vapor cloud explosion>jet fire>flash fire>cold cloud. The vapor cloud explosion is the leading consequence of both instantaneous and continuous releases and may be used for the determination of safety distances of a liquid hydrogen tank. Besides the harm effect distances of liquid hydrogen tank are compared with those of compressed hydrogen storages with equivalent mass. Results show that the liquid hydrogen storage may be safer than 70MPa gaseous storage in case of leak scenario but may be more dangerous than 70MPa storage in case of catastrophic rupture. It is difficult to tell which storage is safer from a consequence perspective. Further investigation need to be made from a standpoint of risk which combined both consequences and the likelihood of scenarios.
Safety Assessment of Unignited Hydrogen Discharge from Onboard Storage in Garages with Low Levels of Natural Ventilation
Sep 2011
Publication
This study is driven by the need to understand requirements to safe blow-down of hydrogen onboard storage tanks through a pressure relief device (PRD) inside a garage-like enclosure with low natural ventilation. Current composite tanks for high pressure hydrogen storage have been shown to rupture in 3.5–6.5 min in fire conditions. As a result a large PRD venting area is currently used to release hydrogen from the tank before its catastrophic failure. However even if unignited the release of hydrogen from such PRDs has been shown in our previous studies to result in unacceptable overpressures within the garage capable of causing major damage and possible collapse of the structure. Thus to prevent collapse of the garage in the case of a malfunction of the PRD and an unignited hydrogen release there is a clear need to increase blow-down time by reducing PRD venting area. Calculations of PRD diameter to safely blow-down storage tanks with inventories of 1 5 and 13 kg hydrogen are considered here for a range of garage volumes and natural ventilation expressed in air changes per hour (ACH). The phenomenological model is used to examine the pressure dynamics within a garage with low natural ventilation down to the known minimum of 0.03 ACH. Thus with moderate hydrogen flow rate from the PRD and small vents providing ventilation of the enclosure there will be only outflow from the garage without any air intake from outside. The PRD diameter which ensures that the pressure in the garage does not exceed a value of 20 kPa (accepted in this study as a safe overpressure for civil structures) was calculated for varying garage volumes and natural ventilation (ACH). The results are presented in the form of simple to use engineering nomograms. The conclusion is drawn that PRDs currently available for hydrogen-powered vehicles should be redesigned along with either a change of requirements for the fire resistance rating or innovative design of the onboard storage system as hydrogen-powered vehicles are intended for garage parking. Further research is needed to develop safety strategies and engineering solutions to tackle the problem of fire resistance of onboard storage tanks and requirements to PRD performance. Regulation codes and standards in the field should address this issue.
Hypothetical Accident Scenario Modelling for Condensed Hydrogen Storage Materials
Sep 2011
Publication
Hydrogen is seen as an ideal energy carrier for stationary and mobile applications. However the use of high energy density condensed hydrogen storage materials such as NH3BH3 comes with risks associated with their high reactivity with water exposure and their decomposition products reactivity in air. To predict their behaviour under these circumstances idealized finite element models of hypothetical accident scenarios have been developed. Empirical thermodynamic calculations based on precise thermal gravimetric analysis (TGA) and calorimetric experiments have been performed in order to quantify the energy and hydrogen release rates and to quantify the reaction products resulting from water and air exposure.
Numerical Simulations of Spontaneous Ignition of High-pressure Hydrogen Based on Detailed Chemical Kinetics
Sep 2013
Publication
A two-dimensional (2-D) simulation of spontaneous ignition of high-pressure hydrogen in a length of duct is conducted in order to explore its underlying ignition mechanisms. The present study adopts a 2-D rectangular duct (i.e. not axisymmetric geometry) and focuses on the effects of initial diaphragm shape on the spontaneous ignitions. The Navier-Stokes equations with a detailed chemical kinetics mechanism are solved in a manner of direct numerical simulation. The detailed mechanisms of spontaneous ignition are discussed for each initial diaphragm shape. For a straight diaphragm shape it is found that the ignition occurs only near the wall due to the adiabatic wall condition while the three ignition events: ignitions due to leading shock wave reflection at the wall hydrogen penetration into shock-heated air near the wall and deep penetration of hydrogen into shock-heated air behind the leading shock wave are identified for a largely deformed diaphragm shape.
Hydrogen Risk Assessment in Sao Paulo State, Brazil
Sep 2011
Publication
Sao Paulo State Environmental Protection Agency CETESB Brazil adopts a so called Reference Distance (RD) from hazardous substances storage facilities to populated places as a decision making tool for the application of a simplified or a full Risk Analysis (RA). As for hydrogen RD was set up based on instantaneous release scenarios where consequences reaching off-site population were estimated for delayed ignition ending up in vapor cloud explosion (VCE) with a 0.1 bar blast wave overpressure as a chosen endpoint corresponding to a 1%2of death probability range. Procedures for RD evaluation and further adoption by CETESB are presented in this paper.
Risk Mitigation Strategies for Hydrogen Storage Materials
Sep 2011
Publication
Hydrogen is seen as an ideal energy carrier for stationary and mobile applications. However the use of high energy density materials such as hydrides comes with the drawback of risks associated to their high reactivity towards air and water exposure. We have developed novel strategies to mitigate these risks. These strategies were evaluated using standard UN tests and isothermal calorimetric measurements. Cycling experiments were conducted to assess the impact of the mitigants on the modified materials derived from 8LiH•3Mg(NH2)2 system. In some cases our results show an improvement in kinetics when compared to the unmodified material. Effective mitigants were also discovered for aluminium hydride (alane) and lithium borohydride completely inhibiting ignition.
Influence of Pressure and Temperature on the Fatigue Strength of Type-3 Compressed-hydrogen Tanks
Sep 2011
Publication
The pressure of compressed hydrogen changes with temperature when mass and volume are constant. Therefore when a compressed-hydrogen tank is filled with a certain amount of hydrogen it is necessary to adjust the filling pressure according to the gas temperature. In this study we conducted hydraulic pressure-cycle tests to investigate the fatigue life of Type-3 compressed-hydrogen tanks when environmental temperature and filling pressure are changed. The results indicated that the fatigue life at low temperatures (−40 °C 28 MPa) and room temperature (15 °C 35 MPa) was almost equal. However the fatigue life at high temperatures (85 °C 44 MPa) was shorter than that under other conditions suggesting that stress changes caused by thermal stress affect the fatigue life of the Type-3 tank.
No more items...