Brazil
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
Jul 2025
Publication
This article presents the development integration and experimental validation of a modular microgrid for sustainable hydrogen production addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment with scalability to other applications. Centered on a six-compartment skid it integrates photovoltaic generation battery storage and a liquefied petroleum gas generator to emulate typical cogeneration conditions together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility demonstrating stable hydrogen production efficient energy management and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts.
Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides
Oct 2021
Publication
Hydrogen is mainly produced by steam reforming of natural gas a non-renewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work butanol a model compound of bio-oil was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 ◦C atmospheric pressure GHSV of 500000 h−1 and an aqueous solution feed of 10% v/v butanol. For this reaction catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity which is closely related to coke formation and deactivation. Ni/La2O3– Al2O3 presented a higher nickel dispersion (14.6%) which combined with other properties led to a higher stability higher mean hydrogen yield (71%) and lower coke formation per mass (56%). On the other hand the nonpromoted catalyst suffered a significant deactivation associated with coke formation favored by its highest acidity (3.1 µmol m−2 ).
Optimized Configuration of Diesel Engine-Fuel Cell-Battery Hybrid Power Systems in a Platform Supply Vessel to Reduce CO2 Emissions
Mar 2022
Publication
The main objective of this paper is to select the optimal configuration of a ship’s power system considering the use of fuel cells and batteries that would achieve the lowest CO2 emissions also taking into consideration the number of battery cycles. The ship analyzed in this work is a Platform Supply Vessel (PSV) used to support oil and gas offshore platforms transporting goods equipment and personnel. The proposed scheme considers the ship’s retrofitting. The ship’s original main generators are maintained and the fuel cell and batteries are installed as complementary sources. Moreover a sensitivity analysis is pursued on the ship’s demand curve. The simulations used to calculate the CO2 emissions for each of the new hybrid configurations were developed using HOMER software. The proposed solutions are auxiliary generators three types of batteries and a protonexchange membrane fuel cell (PEMFC) with different sizes of hydrogen tanks. The PEMFC and batteries were sized as containerized solutions and the sizing of the auxiliary engines was based on previous works. Each configuration consists of a combination of these solutions. The selection of the best configuration is one contribution of this paper. The new configurations are classified according to the reduction of CO2 emitted in comparison to the original system. For different demand levels the results indicate that the configuration classification may vary. Another valuable contribution of this work is the sizing of the battery and hydrogen storage systems. They were installed in 20 ft containers since the installation of batteries fuel cells and hydrogen tanks in containers is widely used for ship retrofit. As a result the most significant reduction of CO2 emissions is 10.69%. This is achieved when the configuration includes main generators auxiliary generators a 3119 kW lithium nickel manganese cobalt (LNMC) battery a 250 kW PEMFC and 581 kg of stored hydrogen.
Optimal Energy Management System Using Biogeography Based Optimization for Grid-connected MVDC Microgrid with Photovoltaic, Hydrogen System, Electric Vehicles and Z-source Converters
Oct 2021
Publication
Currently the technology associated with charging stations for electric vehicles (EV) needs to be studied and improved to further encourage its implementation. This paper presents a new energy management system (EMS) based on a Biogeography-Based Optimization (BBO) algorithm for a hybrid EV charging station with a configuration that integrates Z-source converters (ZSC) into medium voltage direct current (MVDC) grids. The EMS uses the evolutionary BBO algorithm to optimize a fitness function defining the equivalent hydrogen consumption/generation. The charging station consists of a photovoltaic (PV) system a local grid connection two fast charging units and two energy storage systems (ESS) a battery energy storage (BES) and a complete hydrogen system with fuel cell (FC) electrolyzer (LZ) and hydrogen tank. Through the use of the BBO algorithm the EMS manages the energy flow among the components to keep the power balance in the system reducing the equivalent hydrogen consumption and optimizing the equivalent hydrogen generation. The EMS and the configuration of the charging station based on ZSCs are the main contributions of the paper. The behaviour of the EMS is demonstrated with three EV connected to the charging station under different conditions of sun irradiance. In addition the proposed EMS is compared with a simpler EMS for the optimal management of ESS in hybrid configurations. The simulation results show that the proposed EMS achieves a notable improvement in the equivalent hydrogen consumption/generation with respect to the simpler EMS. Thanks to the proposed configuration the output voltage of the components can be upgraded to MVDC while reducing the number of power converters compared with other configurations without ZSC.
Hydrogen Fuel Cell Aircraft for the Nordic Market
Mar 2024
Publication
A model for a fuel cell propelled 50 PAX hydrogen aircraft is developed. In terms of year 2045 Nordic air travel demand this aircraft is expected to cover 97% of travel distances and 58% of daily passenger volume. Using an ATR 42 as a baseline cryogenic tanks and fuel cell stacks are sized and propulsion system masses updated. Fuselage and wing resizing are required which increases mass and wetted area. Sizing methods for the multi-stack fuel cell and the cryogenic tanks are implemented. The dynamic aircraft model is updated with models for hydrogen consumption and tank pressure control. For the Multi-layer insulation (MLI) tank a trade study is performed. A ventilation pressure of 1.76 bar and 15 MLI layers are found to be optimal for the design mission. A return-without-refuel mission is explored where for a 10-hour ground hold 38.4% of the design range is retained out of the theoretically achievable 50%.
An Alkaline-Acid Glycerol Electrochemical Reformer for Simultaneous Production of Hydrogen and Electricity
Apr 2022
Publication
This study shows the results for the first time of an glycerol alkaline-acid electrolyzer. Such a configuration allows spontaneous operation producing energy and hydrogen simultaneously as a result of the utilization of the neutralization and fuel chemical energy. The electroreformer—built with a 20 wt% Pd/C anode and cathode and a Na+ -pretreated Nafion® 117—can simultaneously produce hydrogen and electricity in the low current density region whereas it operates in electrolysis mode at high current densities. In the spontaneous region the maximum power densities range from 1.23 mW cm−2 at 30 ◦C to 11.9 mW cm−2 at 90 ◦C with a concomitant H2 flux ranging from 0.0545 STP m−3 m−2 h −1 at 30 ◦C to 0.201 STP m−3 m−2 h −1 at 90 ◦C due to the beneficial effect of the temperature on the performance. Furthermore over a chronoamperometric test the electroreformer shows a stable performance over 12 h. As a challenge proton crossover from the cathode to the anode through the cation exchange Nafion® partially reduces the pH gradient responsible for the extra electromotive force thus requiring a less permeable membrane.
Application of Levelized and Environmental Cost Accounting Techniques to Demonstrate the Feasibility of Green Hydrogen-Powered Buses in Brazil
Feb 2025
Publication
Background: This study applied levelized cost of hydrogen (LCOH) and environmental cost accounting techniques to evaluate the feasibility of producing green hydrogen (GH2) via alkaline electrolysis for use in a bus fleet in Fortaleza Brazil. Methods: A GH2 plant with a 3 MW wind tower was considered in this financial project. A sensitivity analysis was conducted to assess the economic viability of the project considering the influence of production volume the number of electrolysis kits financing time and other kay economic indices. Revenue was derived from the sale of by-products including green hospital oxygen (GHO2) and excess wind energy. A life cycle assessment (LCA) was performed to quantify material and emission flows throughout the H2 production chain. A zero-net hydrogen price scenario was tested to evaluate the feasibility of its use in urban transportation. Results: The production of GH2 in Brazil using alkaline electrolysis powered by wind energy proved to be economically viable for fueling a hydrogen-powered bus fleet. For production volumes ranging from 8.89 to 88.9 kg H2/h the sensitivity analysis revealed high economic performance achieving a net present value (NPV) between USD 19.4 million and USD 21.8 million a payback period of 1–4 years an internal rate of return (IRR) of 24–90% and a return on investment (ROI) of 300–1400%. The LCOH decreased with increased production ranging from 56 to 25 USD/MWh. Over the project timeline GH2 production and use in the bus fleet reduced CO2 emissions by 53000–287000 t CO2 eq. The fuel cell bus fleet project demonstrated viability through fuel cost savings and revenue from carbon credit sales highlighting the economic social and environmental sustainability of GH2 use in urban transportation in Brazil.
Impact of Fuel Production Technologies on Energy Consumption and GHG Emissions from Diesel and Electric–Hydrogen Hybrid Buses in Rio de Janeiro, Brazil
Apr 2023
Publication
In view of the GHG reduction targets to be met Brazilian researchers are looking for cleaner alternatives to energy sources. These alternatives are primarily to be applied in the transport sector which presents high energy consumption as well as high CO2 emissions. In this sense this research developed an LCI study considering two bus alternatives for the city of Rio de Janeiro: diesel-powered internal combustion buses (ICEB) and a hydrogen-powered polymer fuel cell hybrid bus (FCHB). For the FCHB three hydrogen production methods were also included: water electrolysis (WE) ethanol steam reforming (ESR) and natural gas steam reforming (NGSR). The research was aimed at estimating energy consumption including the percentage of energy that is renewable as well as CO2 emissions. The results show diesel as the energy source with the highest emissions as well as the highest fossil energy consumption. Regarding the alternatives for hydrogen production water electrolysis stood out with the lowest emissions.
Hydrogen Environmental Benefits Depend on the Way of Production: An Overview of the Main Processes Production and Challenges by 2050
Jun 2021
Publication
Hydrogen (H2) is presented as an important alternative for clean energy and raw material in the modern world. However the environmental benefits are linked to its process of production. Herein the chemical aspects advantages/disadvantages and challenges of the main processes of H2 production from petroleum to water are described. The fossil fuel (FF)-based methods and the state-of-art strategies are outlined to produce hydrogen from water (electrolysis) wastewater and seawater. In addition a discussion based on a color code to classify the cleanliness of hydrogen production is introduced. By the end a summary of the hydrogen value chain addresses topics related to the financial aspects and perspective for 2050: green hydrogen and zero-emission carbon.
Brazil’s New Green Hydrogen Industry: An Assessment of Its Macroeconomic Viability Through an Input–Output Approach
Dec 2024
Publication
This manuscript explores the role of green hydrogen produced through ethanol reforming in accelerating Brazil’s transition to a low-carbon economic framework. Despite ongoing efforts to lessen carbon dependence Brazil’s reliance on biofuels and other renewable energy sources remains inadequate for fully achieving its decarbonization objectives. Green hydrogen presents a vital opportunity to boost energy sustainability especially in sectors that are challenging to decarbonize such as industry and transportation. By analyzing Brazil’s input–output (I-O) table using data from the Brazilian Institute of Geography and Statistics (IBGE) this study evaluates the macroeconomic potential of green hydrogen focusing on GDP growth and employment generation. Furthermore the research explores green hydrogen systems’ economic feasibility and potential impact on future energy policies offering valuable insights for stakeholders and decision-makers. In addition this investigation highlights Brazil’s abundant renewable resources and identifies the infrastructural investments necessary to support a green hydrogen economy. The findings aim to strengthen Brazil’s national decarbonization strategy and serve as a model for other developing nations transitioning to clean energy.
Increasing Energy Efficiency of Hydrogen Refueling Stations via Optimal Thermodynamic Paths
Sep 2023
Publication
This work addresses the energy efficiency of hydrogen refueling stations (HRS) using a first principles model and optimal control methods to find minimal entropy production operating paths. The HRS model shows good agreement with experimental data achieving maximum state of charge and temperature discrepancies of 1 and 7% respectively. Model solution and optimization is achieved at a relatively low computational time (40 s) when compared to models of the same degree of accuracy. The entropy production mapping indicates the flow control valve as the main source of irreversibility accounting for 85% of the total entropy production in the process. The minimal entropy production refueling path achieves energy savings from 20 to 27% with respect to the SAE J2601 protocol depending on the ambient temperature. Finally the proposed method under nearreversible refueling conditions shows a theoretical reduction of 43% in the energy demand with respect to the SAE J2601 protocol.
Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid
Apr 2023
Publication
The Brazilian energy grid is considered as one of the cleanest in the world because it is composed of more than 80% of renewable energy sources. This work aimed to apply the levelized costs (LCOH) and environmental cost accounting techniques to demonstrate the feasibility of producing hydrogen (H2 ) by alkaline electrolysis powered by the Brazilian energy grid. A project of hydrogen production with a lifetime of 20 years had been evaluated by economical and sensitivity analysis. The production capacity (8.89 to 46.67 kg H2/h) production volume (25 to 100%) hydrogen sale price (1 to 5 USD/kg H2 ) and the MAR rate were varied. Results showed that at 2 USD/kg H2 all H2 production plant sizes are economically viable. On this condition a payback of fewer than 4 years an IRR greater than 31 a break-even point between 56 and 68% of the production volume and a ROI above 400% were found. The sensitivity analysis showed that the best economic condition was found at 35.56 kg H2/h of the plant size which generated a net present value of USD 10.4 million. The cost of hydrogen varied between 1.26 and 1.64 USD/kg and a LCOH of 37.76 to 48.71 USD/MWh. LCA analysis showed that the hydrogen production project mitigated from 26 to 131 thousand tons of CO2 under the conditions studied.
Solid Air Hydrogen Liquefaction, the Missing Link of the Hydrogen Economy
Mar 2023
Publication
The most challenging aspect of developing a green hydrogen economy is long-distance oceanic transportation. Hydrogen liquefaction is a transportation alternative. However the cost and energy consumption for liquefaction is currently prohibitively high creating a major barrier to hydrogen supply chains. This paper proposes using solid nitrogen or oxygen as a medium for recycling cold energy across the hydrogen liquefaction supply chain. When a liquid hydrogen (LH2) carrier reaches its destination the regasification process of the hydrogen produces solid nitrogen or oxygen. The solid nitrogen or oxygen is then transported in the LH2 carrier back to the hydrogen liquefaction facility and used to reduce the energy consumption cooling gaseous hydrogen. As a result the energy required to liquefy hydrogen can be reduced by 25.4% using N2 and 27.3% using O2. Solid air hydrogen liquefaction (SAHL) can be the missing link for implementing a global hydrogen economy.
Electrochemical Looping Green Hydrogen Production by Using Water Electrochemically Treated as a Raw Material for the Electrolyzer
May 2025
Publication
In this study the applicability of an integrated-hybrid process was performed in a divided electrochemical cell for removing organic matter from a polluted effluent with simultaneous production of green H2. After that the depolluted water was reused for the first time in the cathodic compartment once again in the same cell to be a viable environmental alternative for converting water into energy (green H2) with higher efficiency and reasonable cost requirements. The production of green H2 in the cathodic compartment (Ni-Fe-based steel stainless (SS) mesh as cathode) in concomitance with the electrochemical oxidation (EO) of wastewater in the anodic compartment (boron-doped diamond (BDD) supported in Nb as anode) was studied (by applying different current densities (j = 30 60 and 90 mA cm−2 ) at 25 ◦C) in a divided-membrane type electrochemical cell driven by a photovoltaic (PV) energy source. The results clearly showed that in the first step the water anodically treated by applying 90 mA cm−2 for 180 min reached high-quality water parameters. Meanwhile green H2 production was greater than 1.3 L with a Faradaic efficiency of 100%. Then in a second step the water anodically treated was reused in the cathodic compartment again for a new integrated-hybrid process with the same electrodes under the same experimental conditions. The results showed that the reuse of water in the cathodic compartment is a sustainable strategy to produce green H2 when compared to the electrolysis using clean water. Finally two implied benefits of the proposed process are the production of green H2 and wastewater cleanup both of which are equally significant and sustainable. The possible use of H2 as an energetic carrier in developing nations is a final point about sustainability improvements. This is a win-win solution.
Advances, Progress, and Future Directions of Renewable Wind Energy in Brazil (2000–2025–2050)
May 2025
Publication
Brazil has emerged as one of the global leaders in adopting renewable energy standing out in the implementation of onshore wind energy and more recently in the development of future offshore wind energy projects. Onshore wind energy has experienced exponential growth in the last decade positioning Brazil as one of the countries with the largest installed capacity in the world by 2023 with 30 GW. Wind farms are mainly concentrated in the northeast region where winds are constant and powerful enabling efficient and cost-competitive generation. Although in its early stages offshore wind energy presents significant potential of 1228 GW due to Brazil’s extensive coastline which exceeds 7000 km. Offshore wind projects promise greater generating capacity and stability as offshore winds are more constant than onshore winds. However their development faces challenges such as high initial costs environmental impacts on marine ecosystems and the need for specialized infrastructure. From a sustainability perspective this article discusses that both types of wind energy are key to Brazil’s energy transition. They reduce dependence on fossil fuels generate green jobs and foster technological innovation. However it is crucial to implement policies that foster synergy with green hydrogen production and minimize socio-environmental impacts such as impacts on local communities and biodiversity. Finally the article concludes that by 2050 Brazil is expected to consolidate its leadership in renewable energy by integrating advanced technologies such as larger more efficient turbines energy storage systems and green hydrogen production. The combination of onshore and offshore wind energy and other renewable sources could position the country as a global model for a clean sustainable and resilient energy mix.
Design and Layout Planning of a Green Hydrogen Production Facility
May 2025
Publication
In response to the greenhouse gas (GHG) reduction targets set by the Paris Agreement green hydrogen has become a key solution for global decarbonisation. However research on the design of green hydrogen production facilities remains limited particularly in Brazil. This study bridges this gap by developing a comprehensive design for a green hydrogen production plant powered by an 81 MW photovoltaic (PV) system in Ceará Brazil. The facility layout equipment sizing and resource requirements were determined using the Systematic Layout Planning (SLP) method based on the available energy for daily hydrogen production. The design also integrates safety regulations including local standards in Ceará as well as raw material needs and production capacity. This study delivers a detailed facility layout specifying equipment placement and capacity based on the PV plant’s output while ensuring compliance with safety protocols. This research contributes to the green hydrogen literature by providing a structured methodology for facility design serving as a reference for future projects and fostering the advancement of green hydrogen technology particularly in developing countries.
Analysis of the Sugarcane Biomass Use to Produce Green Hydrogen: Brazilian Case Study
Feb 2025
Publication
Conventional hydrogen production processes which often involve fossil raw materials emit significant amounts of carbon dioxide into the atmosphere. This study critically evaluates the feasibility of using sugarcane biomass as an energy source to produce green hydrogen. In the 2023/2024 harvest Brazil the world’s largest sugarcane producer processed approximately 713.2 million metric tons of sugarcane. This yielded 45.68 million metric tons of sugar and 29.69 billion liters of first-generation ethanol equivalent to approximately 0.0416 liters of ethanol per kilogram of sugarcane. A systematic literature review was conducted using Scopus and Clarivate Analytics Web of Science resulting in the assessment of 335 articles. The study has identified seven potential biohydrogen production methods including two direct approaches from second-generation ethanol and five from integrated bioenergy systems. Experimental data indicate that second-generation ethanol can yield 594 MJ per metric ton of biomass with additional energy recovery from lignin combustion (1705 MJ per metric ton). Moreover advances in electrocatalytic reforming and plasma-driven hydrogen production have demonstrated high conversion efficiencies addressing key technical barriers. The results highlight Brazil’s strategic potential to integrate biohydrogen production within its existing bioenergy infrastructure. By leveraging sugarcane biomass for green hydrogen the country can contribute significantly to the global transition to sustainable energy while enhancing its energy security.
Hydrogen Production Plant Retrofit for Green H2: Experimental Validation of a High-Efficiency Retrofit of an Alkaline Hydrogen Plant Using an Isolated DC Microgrid
Oct 2025
Publication
Given the climate change observed in the past few decades sustainable development and the use of renewable energy sources are urgent. In this scenario hydrogen production through electrolyzers is a promising renewable source and energy vector because of its ultralow greenhouse emissions and high energy content. Hydrogen can be used in a variety of applications from transportation to electricity generation contributing to the diversification of the energy matrix. In this context this paper presents an autonomous isolated DC microgrid system for generating and storing electrical energy to be exclusively used for feeding an electrolyzer hydrogen production plant which has been retrofitted for green hydrogen production. Experimental verification was performed at Itaipu Parquetec which consists of an alkaline electrolysis unit directly integrated with a battery energy storage system and renewable sources (e.g. photovoltaic and wind) by using an isolated DC microgrid concept based on DC/DC and AC/DC converters. Experimental results revealed that the new electrolyzer DC microgrid increases the system’s overall efficiency in comparison to the legacy thyristor-based power supply system by 26% and it autonomously controls the energy supply to the electrolyzer under optimized conditions with an extremely low output current ripple. Another advantage of the proposed DC microgrid is its ability to properly manage the startup and shutdown process of the electrolyzer plant under power generation outages. This paper is the result of activities carried out under the R&D project of ANEEL program No. PD-10381-0221/2021 entitled “Multiport DC-DC Converter and IoT System for Intelligent Energy Management” which was conducted in partnership with CTG-Brazil.
Natural Hydrogen in Uruguay: Catalog of H2-Generating Rocks, Prospective Exploration Areas, and Potential Systems
Feb 2025
Publication
The increasing demand for carbon-free energy in recent years has positioned hydrogen as a viable option. However its current production remains largely dependent on carbon-emitting sources. In this context natural hydrogen generated through geological processes in the Earth’s subsurface has emerged as a promising alternative. The present study provides the first national-scale assessment of natural dihydrogen (H2) potential in Uruguay by developing a catalog of potential H2-generating rocks identifying prospective exploration areas and proposing H2 systems there. The analysis includes a review of geological and geophysical data from basement rocks and onshore sedimentary basins. Uruguay stands out as a promising region for natural H2 exploration due to the significant presence of potential H2-generating rocks in its basement such as large iron formations (BIFs) radioactive rocks and basic and ultrabasic rocks. Additionally the Norte Basin exhibits potential efficient cap rocks including basalts and dolerites with geological analogies to the Mali field. Indirect evidence of H2 in a free gas phase has been observed in the western Norte Basin. This suggests the presence of a potential H2 system in this area linked to the Arapey Formation basalts (seal) and Mesozoic sandstones (reservoir). Furthermore the proposed H2 system could expand exploration opportunities in northeastern Argentina and southern Brazil given the potential presence of similar play/tramp.
O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review
Mar 2025
Publication
Developing clean and renewable energy instead of the ones related to hydrocarbon resources has been known as one of the different ways to guarantee reduced greenhouse gas emissions. Geothermal systems and native hydrogen exploration could represent an opportunity to diversify the global energy matrix and lower carbon-related emissions. All of these natural energy sources require a well to be drilled for its access and/or extractions similar to the petroleum industry. The main focuses of this technical–scientific contribution and research are (i) to evaluate the global energy matrix; (ii) to show the context over the years and future perspectives on geothermal systems and natural hydrogen exploration; and (iii) to present and analyze the importance of developing technologies on drilling process optimization aiming at accessing these natural energy resources. In 2022 the global energy matrix was composed mainly of nonrenewable sources such as oil natural gas and coal where the combustion of fossil fuels produced approximately 37.15 billion tons of CO2 in the same year. In 2023 USD 1740 billion was invested globally in renewable energy to reduce CO2 emissions and combat greenhouse gas emissions. In this context currently about 353 geothermal power units are in operation worldwide with a capacity of 16335 MW. In addition globally there are 35 geothermal power units under pre-construction (project phase) 93 already being constructed and recently 45 announced. Concerning hydrogen the industry announced 680 large-scale project proposals valued at USD 240 billion in direct investment by 2030. In Brazil the energy company Petroleo Brasileiro SA (Petrobras Rio de Janeiro Brazil) will invest in the coming years nearly USD 4 million in research involving natural hydrogen generation and since the exploration and access to natural energy resources (oil and gas natural hydrogen and geothermal systems among others) are achieved through the drilling of wells this document presents a technical–scientific contextualization of social interest.
No more items...