Brunei Darussalam
A Review on Recent Advances in Hydrogen Energy, Fuel Cell, Biofuel and Fuel Refining via Ultrasound Process Intensification
Mar 2021
Publication
Hydrogen energy is one of the most suitable green substitutes for harmful fossil fuels and has been investigated widely. This review extensively compiles and compares various methodologies used in the production storage and usage of hydrogen. Sonochemistry is an emerging synthesis process and intensification technique adapted for the synthesis of novel materials. It manifests acoustic cavitation phenomena caused by ultrasound where higher rates of reactions occur locally. The review discusses the effectiveness of sonochemical routes in developing fuel cell catalysts fuel refining biofuel production chemical processes for hydrogen production and the physical chemical and electrochemical hydrogen storage techniques. The operational parameters and environmental conditions used during ultrasonication also influence the production rates which have been elucidated in detail. Hence this review's major focus addresses sonochemical methods that can contribute to the technical challenges involved in hydrogen usage for energy.
Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application
May 2023
Publication
This paper provides a comprehensive review of the research progress current state-ofthe-art and future research directions of energy storage systems. With the widespread adoption of renewable energy sources such as wind and solar power the discourse around energy storage is primarily focused on three main aspects: battery storage technology electricity-to-gas technology for increasing renewable energy consumption and optimal configuration technology. The paper employs a visualization tool (CiteSpace) to analyze the existing works of literature and conducts an in-depth examination of the energy storage research hotspots in areas such as electrochemical energy storage hydrogen storage and optimal system configuration. It presents a detailed overview of common energy storage models and configuration methods. Based on the reviewed articles the future development of energy storage will be more oriented toward the study of power characteristics and frequency characteristics with more focus on the stability effects brought by transient shocks. This review article compiles and assesses various energy storage technologies for reference and future research.
A Techno-Economic Assessment of Steam Methane Reforming and Alkaline Water Electrolysis for Hydrogen Production
Mar 2025
Publication
This study explores hydrogen’s potential as a sustainable energy source for Brunei given the nation’s reliance on fossil fuels and associated environmental concerns. Specifically it evaluates two hydrogen production technologies; steam methane reforming (SMR) and alkaline water electrolysis (AWE) through a techno-economic framework that assesses life cycle cost (LCC) efficiency scalability and environmental impact. SMR the most widely used technique is cost-effective but carbon-intensive producing considerable carbon dioxide emissions unless combined with carbon capture to yield “blue hydrogen”. On the other hand AWE particularly when powered by renewable energy offers a cleaner alternative despite challenges in efficiency and cost. The assessment revealed that AWE has a significantly higher LCC than SMR making AWE the more economically viable hydrogen production method in the long term. A sensitivity analysis was also conducted to determine the main cost factors affecting the LCC providing insights into the long term viability of each technology from an operational and financial standpoint. AWE’s economic viability is mostly driven by the high electricity and feedstock costs while SMR relies heavily on feedstock costs. However Environmental Impact Analysis (EIA) indicates that AWE produces significantly higher carbon dioxide emissions than SMR which emits approximately 9100 metric tons of carbon dioxide annually. Nevertheless findings suggest that AWE remains the more sustainable option due to its higher LCC costs and compatibility with renewable energy especially in regions with access to low-cost renewable electricity
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Membrane-Based Hydrogen Production: A Techno-Economic Evaluation of Cost and Feasibility
Feb 2025
Publication
As the global shift toward a low-carbon economy accelerates hydrogen is emerging as a crucial energy source. Among conventional methods for hydrogen production steam methane reforming (SMR) commonly paired with pressure swing adsorption (PSA) for hydrogen purification stands out due to its established infrastructure and technological maturity. This comprehensive techno-economic analysis focuses on membrane-based hydrogen production evaluating four configurations namely SMR SMR with PSA SMR with a palladium membrane and SMR with a ceramic–carbonate membrane coupled with a carbon capture system (CCS). The life cycle cost (LCC) of each configuration was assessed by analyzing key factors including production rate hydrogen pricing equipment costs and maintenance expenses. Sensitivity analysis was also conducted to identify major cost drivers influencing the LCC providing insights into the economic and operational feasibility of each configuration. The analysis reveals that SMR with PSA has the lowest LCC and is significantly more cost-efficient than configurations involving the palladium and ceramic–carbonate membranes. SMR with a ceramic–carbonate membrane coupled with CCS also demonstrates the most sensitive to energy variations due to its extensive infrastructure and energy requirement. Sensitivity analysis confirms that SMR with PSA consistently provides the greatest cost efficiency under varying conditions. These findings underscore the critical balance between cost efficiency and environmental considerations in adopting membrane-based hydrogen production technologies.
Solar-Powered Water Electrolysis Using Hybrid Solid Oxide Electrolyzer Cell (SOEC) for Green Hydrogen—A Review
Nov 2023
Publication
The depletion of fossil fuels in the current world has been a major concern due to their role as a primary source of energy for many countries. As non-renewable sources continue to deplete there is a need for more research and initiatives to reduce reliance on these sources and explore better alternatives such as renewable energy. Hydrogen is one of the most intriguing energy sources for producing power from fuel cells and heat engines without releasing carbon dioxide or other pollutants. The production of hydrogen via the electrolysis of water using renewable energy sources such as solar energy is one of the possible uses for solid oxide electrolysis cells (SOECs). SOECs can be classified as either oxygen-ion conducting or proton-conducting depending on the electrolyte materials used. This article aims to highlight broad and important aspects of the hybrid SOEC-based solar hydrogen-generating technology which utilizes a mixed-ion conductor capable of transporting both oxygen ions and protons simultaneously. In addition to providing useful information on the technological efficiency of hydrogen production in SOEC this review aims to make hydrogen production more efficient than any other water electrolysis system.
Metal–Organic Frameworks for Seawater Electrolysis and Hydrogen Production: A Review
Oct 2025
Publication
Electrolysis utilizing renewable electricity is an environmentally friendly non-polluting and sustainable method of hydrogen production. Seawater is the most desirable and inexpensive electrolyte for this process to achieve commercial acceptance compared to competing hydrogen production technologies. We reviewed metal–organic frameworks as possible electrocatalysts for hydrogen production by seawater electrolysis. Metal–organic frameworks are interesting for seawater electrolysis due to their large surface area tunable permeability and ease of functional processing which makes them extremely suitable for obtaining modifiable electrode structures. Here we discussed the development of metal– organic framework-based electrocatalysts as multifunctional materials with applications for alkaline PEM and direct seawater electrolysis for hydrogen production. Their advantages and disadvantages were examined in search of a pathway to a successful and sustainable technology for developing electrode materials to produce hydrogen from seawater.
No more items...