Metal–Organic Frameworks for Seawater Electrolysis and Hydrogen Production: A Review
Abstract
Electrolysis utilizing renewable electricity is an environmentally friendly, non-polluting, and sustainable method of hydrogen production. Seawater is the most desirable and inexpensive electrolyte for this process to achieve commercial acceptance compared to competing hydrogen production technologies. We reviewed metal–organic frameworks as possible electrocatalysts for hydrogen production by seawater electrolysis. Metal–organic frameworks are interesting for seawater electrolysis due to their large surface area, tunable permeability, and ease of functional processing, which makes them extremely suitable for obtaining modifiable electrode structures. Here we discussed the development of metal– organic framework-based electrocatalysts as multifunctional materials with applications for alkaline, PEM, and direct seawater electrolysis for hydrogen production. Their advantages and disadvantages were examined in search of a pathway to a successful and sustainable technology for developing electrode materials to produce hydrogen from seawater.