Canada
Ignition Experiments of Hydrogen Mixtures by Different Methods and Description of the DRDC Test Facilities
Sep 2009
Publication
The paper will present results of hydrogen/oxygen mixtures ignited by using electric sparks electrostatic discharges a heating element and a flame. Measurements of the lower flammability limit (LFL) was done for each ignition method. The hydrogen mixtures of different concentrations were ignited at the bottom of a combustion chamber leading to an upward propagation of the resulting flame. At some level of concentration the combustion was partial due to the limited upward propagation. The complete combustion of the whole mixture was observed at concentration limits higher than the known LFL of 4% vol. for hydrogen in air. The paper will describe the test facilities and the resulting ignition probabilities for different ignition methods.
Quantitative Imaging of Multi-Component Turbulent Jets
Sep 2011
Publication
The integration of a hydrogen gas storage arrangement in vehicles has not been without its challenges. Gaseous state of hydrogen at ambient temperature combined with the fact that hydrogen is highly flammable results in the requirement of more robust high pressure storage systems that can meet modern safety standards. To develop these new safety standards and to properly predict the phenomena of hydrogen dispersion a better understanding of the resulting flow structures and flammable region from controlled and uncontrolled releases of hydrogen gas must be achieved. With the upper and lower explosive limits of hydrogen known the flammable envelope surrounding the site of a uncontrolled hydrogen release can be found from the concentration field. In this study the subsonic release of hydrogen was emulated using helium as a substitute working fluid. A sharp orifice round turbulent jet is used to emulate releases in which leak geometry is circular. Effects of buoyancy and crossflow were studied over a wide range of Froude numbers. The velocity fields of turbulent jets were characterized using particle image velocimetry (PIV). The mean and fluctuation velocity components were well quantified to show the effect of buoyancy due to the density difference between helium and the surrounding air. In the range of Froude numbers investigated (Fr = 1000 750 500 250 and 50) the increasing effects of buoyancy were seen to be proportional to the reduction of the Fr number. While buoyancy is experienced to have a negligible effect on centerline velocity fluctuations acceleration due to buoyancy in the other hand resulted in a slower decay of time-averaged axial velocity component along the centerline. The obtained results will serve as control reference values for further concentration measurement study and for computational fluid dynamics (CFD) validation.
CFD Simulations of the Effect of Ventilation on Hydrogen Release Behavior and Combustion in an Underground Mining Environment
Sep 2013
Publication
CFD simulations investigating the effect of ventilation airflow on hydrogen release behaviour in an underground mining tunnel were performed using FLACS hydrogen. Both dispersion and combustion scenarios of a hydrogen release coming from a severed distribution pipeline were investigated. Effects on the hydrogen dispersion such as ventilation strength and the mechanism of air flow supply (a pull or push fan) and mine opening surface roughness surface cavities and obstructions were explored. Results showing the effect of changing the position of the leak adding a cavity on the ceiling of the tunnel and changing the roughness of the walls are given. Overpressure sensitivity to the ignition delay was also considered. From the results for the varied ventilation regimes and spatial scenarios it is difficult to identify the optimal ventilation strategy giving the safest conditions for hydrogen distribution and refuelling in an underground mine.
Fire Protection Strategy for Compressed Hydrogen-Powered Vehicles
Sep 2007
Publication
Virtually all major automotive companies are currently developing hydrogen-powered vehicles. The vast majority of them employ compressed hydrogen tanks and components as a means of storing the fuel onboard. Compressed hydrogen vehicle fuel systems are designed in the same way as compressed natural gas vehicles (NGV) i.e. the high pressure (up to 70 MPa) fuel is always contained within the system under all conditions with the exception of vehicular fire. In the event of a vehicle fire the fuel system is protected using a non-reclosing thermally activated pressure relief device (PRD) which safely vents the contents. Hydrogen fuel system PRDs are presently qualified to the performance requirements specified in draft hydrogen standards such ANSI/CSA HPRD 1 and EIHP Rev. 12b. They are also qualified with individual fuel tank designs in accordance with the engulfing bonfire requirements in various published/draft tank standards such as CSA B51 Part 2 JARI S001 SAE TIR J2579 ANSI/CSA HGV 2 ISO DIS 15869.2 and EIHP Rev. 12b. Since 2000 there have been over 20 documented NGV tank failures in service 11 of which have been attributed to vehicle fires. This paper will examine whether currently proposed hydrogen performance standards and installation requirements offer suitable fuel system protection in the event of vehicular fires. A number of alternative fire protection strategies will be discussed including:
- The requirement of an engulfing and/or localized fire test for individual tanks fuel systems and complete vehicles;
- The advantages/disadvantages of point source- surface area- and/or fuse-based PRDs
- The use of thermal insulating coatings/blankets for fire protection resulting in the NONventing of the fuel
- The specification of appropriate fuel system installation requirements to mitigate the effect of vehicular fires.
Simulation of Shock-Initiated Ignition
Sep 2009
Publication
The scenario of detonative ignition in shocked mixture is significant because it is a contributor to deflagration to detonation transition for example following shock reflections. However even in one dimension simulation of ignition between a contact surface or a flame and a shock moving into a combustible mixture is difficult because of the singular nature of the initial conditions. Initially as the shock starts moving into reactive mixture the region filled with reactive mixture has zero thickness. On a fixed grid the number of grid points between the shock and the contact surface increases as the shock moves away from the latter. Due to initial lack of resolution in the region of interest staircasing may occur whereby the resulting plots consist of jumps between few values a few grid points and these numerical artifacts are amplified by the chemistry which is very sensitive to temperature leading to unreliable results. The formulation is transformed replacing time and space by time and space over time as the independent variables. This frame of reference corresponds to the self-similar formulation in which the non-reactive problem remains stationary and the initial conditions are well-resolved. Additionally a solution obtained from short time perturbation is used as initial condition at a time still short enough for the perturbation to be very accurate but long enough so that there is sufficient resolution. The numerical solution to the transformed problem is obtained using an essentially non-oscillatory algorithm which is adequate not only for the early part of the process but also for the latter part when chemistry leads to appearance of a shock and eventually a detonation wave is formed. A validation study was performed and the results were compared with the literature for single step Arrhenius chemistry. The method and its implementation were found to be effective. Results are presented for values of activation energy ranging from mild to stiff.
High Pressure Hydrogen Jets in the Presence of a Surface
Sep 2009
Publication
The effect of surfaces on the extent of high pressure vertical and horizontal unignited jets is studied using CFD numerical simulations performed with FLACS Hydrogen and Phoenics. For a constant flow rate release of hydrogen from a 284 bar storage unit through a 8.5 mm orifice located 1 meter from the ground the maximum extent of the flammable cloud is determined as a function of time and compared to a free vertical hydrogen jet under identical release conditions. The results are compared to methane numerical simulations and to the predictions of the Birch correlations for the size of the flammable cloud. We find that the maximum extent of the flammable clouds of free jets obtained using CFD numerical simulations for both hydrogen and methane are in agreement with the Birch predictions. For hydrogen horizontal free jets there is strong buoyancy effect observed towards the end of the flammable cloud thus noticeably reducing its centreline extent. For methane horizontal free jets this effect is not observed. For methane the presence of the ground results in a pronounced increase in the extent of the flammable cloud compared to a free jet. The effects of a surface on vertical jets are also studied.
Simulation of Detonation after an Accidental Hydrogen Release in Enclosed Environments
Sep 2007
Publication
An accidental hydrogen release in equipment enclosures may result in the presence of a detonable mixture in a confined environment. Numerical simulation is potentially a useful tool for damage assessment in these situations. To assess the value of CFD techniques numerical simulation of detonation was performed for two realistic scenarios. The first scenario starts with a pipe failure in an electrolyzer resulting in a leak of 42 g of hydrogen. The second scenario deals with a failure in a reformer where 84 g of hydrogen is released. In both cases dispersion patterns were first obtained from separate numerical simulation and were then used as initial condition in a detonation simulation based upon the reactive Euler's equations. Energy was artificially added in a narrow region to simulate detonative ignition. In the electrolyzer ignition was assumed to occur 500 ms after beginning of the release. Results show a detonation failing on the top and bottom side but propagating left and right before eventually failing also. Average impulse was 500 Ns/m². For the reformer three cases were simulated with ignition 1.0 1.4 and 2.0 seconds after the beginning of the release. In two cases the detonation wave failed everywhere except in the direction of the release in which it continued propagating until reaching the side wall. In the third the detonation failed everywhere at first but later a deflagration to detonation transition occurred resulting in a strong wave that propagated rapidly toward the side wall. In all three cases the consequences are more serious than in the electrolyzer.
Enhancing the Efficiency of Power- and Biomass-to-liquid Fuel Processes Using Fuel-assisted Solid Oxide Electrolysis Cells
Apr 2022
Publication
Power- and biomass-to-liquid fuel processes (PBtL) can utilize renewable energy and residual forestry waste to produce liquid synthetic fuels which have the potential to mitigate the climate impacts of the current transportation infrastructure including the long-haul aviation sector. In a previous study we demonstrated that implementing a solid oxide electrolysis cell (SOEC) in the PBtL process can significantly increase the energy efficiency of fuel production by supplying the produced hydrogen to a reverse water gas shift (RWGS) reactor to generate syngas which is then fed downstream to a Fischer–Tropsch (FT) reactor. The tail gas emitted from the FT reactor consists primarily of a mixture of hydrogen carbon monoxide and methane and is often recycled to the entrained flow gasifier located at the beginning of the process. In this analysis we investigate the efficiency gains of the PBtL process as a result of redirecting the tail gas of the FT reactor to the anode of an SOEC to serve as fuel. Supplying fuel to an SOEC can lower the electrical work input required to facilitate steam electrolysis when reacting electrochemically with oxide ions in the anode which in turn can reduce oxygen partial pressures and thus alleviate material degradation. Accordingly we develop a thermodynamic framework to reveal the performance limits of fuel-assisted SOECs (FASOECs) and provide strategies to minimize oxygen partial pressures in the SOEC anode. Additionally we elucidate how much fuel is required to match the heating demands of a cell when steam is supplied to the cathode over a broad range of inlet temperatures and demonstrate the influence of a set of reaction pathways of the supplied fuel on the operating potential of an FASOEC and the corresponding efficiency gain of the PBtL process. Based on preliminary calculations we estimate that implementing an FASOEC in the PBtL process can increase the energy efficiency of fuel production to more than 90% depending on the amount of FT tail gas available to the system.
Kinetic Modeling and Quantum Yields: Hydrogen Production via Pd‐TiO2 Photocatalytic Water Splitting under Near‐UV and Visible Light
Jan 2022
Publication
A palladium (Pd) doped mesoporous titanium dioxide (TiO2) photocatalyst was used to produce hydrogen (H2) via water splitting under both near‐UV and visible light. Experiments were carried out in the Photo‐CREC Water‐II Reactor (PCW‐II) using a 0.25 wt% Pd‐TiO2 photocatalyst initial pH = 4 and 2.0 v/v% ethanol as an organic scavenger. After 6 h of near‐UV irradiation this photocatalyst yielded 113 cm3 STP of hydrogen (H2). Furthermore after 1 h of near‐UV photoreduc‐ tion followed by 5 h of visible light the 0.25 wt% Pd‐TiO2 photocatalyst yielded 5.25 cm3 STP of H2. The same photocatalyst photoreduced for 24 h under near‐UV and subsequently exposed to 5 h of visible light yielded 29 cm3 STP of H2. It was observed that the promoted redox reactions led to the production of hydrogen and by‐products such as methane ethane ethylene acetaldehyde carbon monoxide carbon dioxide and hydrogen peroxide. These redox reactions could be modeled using an “in series‐parallel” reaction network and Langmuir Hinshelwood based kinetics. The proposed rate equations were validated using statistical analysis for the experimental data and calculated kinetic parameters. Furthermore Quantum yields (QYୌ%) based on the H produced were also established at promising levels: (a) 34.8% under near‐UV light and 1.00 g L−1 photocatalyst concen‐ tration; (b) 8.8% under visible light and 0.15 g L−1. photocatalyst concentration following 24 h of near‐UV.
PRD Hydrogen Release and Dispersion, a Comparison of CFD Results Obtained from Using Ideal and Real Gas Law Properties.
Sep 2005
Publication
In this paper CFD techniques were applied to the simulations of hydrogen release from a 400-bar tank to ambient through a Pressure Relieve Device (PRD) 6 mm (¼”) opening. The numerical simulations using the TOPAZ software developed by Sandia National Laboratory addressed the changes of pressure density and flow rate variations at the leak orifice during release while the PHOENICS software package predicted extents of various hydrogen concentration envelopes as well as the velocities of gas mixture for the dispersion in the domain. The Abel-Noble equation of state (AN-EOS) was incorporated into the CFD model implemented through the TOPAZ and PHOENICS software to accurately predict the real gas properties for hydrogen release and dispersion under high pressures. The numerical results were compared with those obtained from using the ideal gas law and it was found that the ideal gas law overestimates the hydrogen mass release rates by up to 35% during the first 25 seconds of release. Based on the findings the authors recommend that a real gas equation of state be used for CFD predictions of high-pressure PRD releases.
Feasibility Investigation of Hydrogen Refuelling Infrastructure for Heavy‐Duty Vehicles in Canada
Apr 2022
Publication
A potentially viable solution to the problem of greenhouse gas emissions by vehicles in the transportation sector is the deployment of hydrogen as alternative fuel. A limitation to the diffusion of the hydrogen‐fuelled vehicles option is the intricate refuelling stations that vehicles will require. This study examines the practical use of hydrogen fuel within the internal combustion engine (ICE)‐powered long‐haul heavy‐duty trucking vehicles. Specifically it appraises the techno‐ economic feasibility of constructing a network of long‐haul truck refuelling stations using hydrogen fuel across Canada. Hydrogen fuel is chosen as an option for this study due to its low carbon emissions rate compared to diesel. This study also explores various operational methods including variable technology integration levels and truck traffic flows truck and pipeline delivery of hydrogen to stations and the possibility of producing hydrogen onsite. The proposed models created for this work suggest important parameters for economic development such as capital costs for station construction the selling price of fuel and the total investment cost for the infrastructure of a nation‐ wide refuelling station. Results showed that the selling price of hydrogen gas pipeline delivery op‐ tion is more economically stable. Specifically it was found that at 100% technology integration the range in selling prices was between 8.3 and 25.1 CAD$/kg. Alternatively at 10% technology integration the range was from 12.7 to 34.1 CAD$/kg. Moreover liquid hydrogen which is delivered by trucks generally had the highest selling price due to its very prohibitive storage costs. However truck‐delivered hydrogen stations provided the lowest total investment cost; the highest is shown by pipe‐delivered hydrogen and onsite hydrogen production processes using high technology integration methods. It is worth mentioning that once hydrogen technology is more developed and deployed the refuelling infrastructure cost is likely to decrease considerably. It is expected that the techno‐economic model developed in this work will be useful to design and optimize new and more efficient hydrogen refuelling stations for any ICE vehicles or fuel cell vehicles.
Challenges and Important Considerations When Benchmarking Single-cell Alkaline Electrolyzers
Nov 2021
Publication
This study outlines an approach to identifying the difficulties associated with the bench-marking of alkaline single cells under real electrolyzer conditions. A challenging task in the testing and comparison of different catalysts is obtaining reliable and meaningful benchmarks for these conditions. Negative effects on reproducibility were observed due to the reduction in conditioning time. On the anode side a stable passivation layer of NiO can be formed by annealing of the Ni foams which is even stable during long-term operation. Electrical contact resistance and impedance measurements showed that most of the contact resistance derived from the annealed Ni foam. Additionally analysis of various overvoltages indicated that most of the total overvoltage comes from the anode and cathode activation overpotential. Different morphologies of the substrate material exhibited an influence on the performance of the alkaline single cell based on an increase in the ohmic resistance.
Simulations of Hydrogen Releases from a Storage Tanks- Dispersion and Consequences of Ignition
Sep 2005
Publication
We present results from hydrogen dispersion simulations from a pressurized reservoir at constant flow rate in the presence and absence of a wall. The dispersion simulations are performed using a commercial finite volume solver. Validation of the approach is discussed. Constant concentration envelopes corresponding to the 2% 4% and 15% hydrogen concentration in air are calculated for a subcritical vertical jet and for an equivalent subcritical horizontal jet from a high pressure reservoir. The consequences of ignition and the resulting overpressure are calculated for subcritical horizontal and vertical hydrogen jets and in the latter case compared to available experimental data.
The Role of Charging and Refuelling Infrastructure in Supporting Zero-emission Vehicle Sales
Mar 2020
Publication
Widespread uptake of battery electric plug-in hybrid and hydrogen fuel-cell vehicles (collectively zero-emissions vehicles or ZEVs) could help many regions achieve deep greenhouse gas mitigation goals. Using the case of Canada this study investigates the extent to which increasing ZEV charging and refuelling availability may boost ZEV sales relative to other ZEV-supportive policies. We adapt a version of the Respondent-based Preferences and Constraints (REPAC) model using 2017 survey data from 1884 Canadian new vehicle-buyers to simulate the sales impacts of increasing electric vehicle charging access at home work public destinations and on highways as well as increasing hydrogen refuelling station access. REPAC is built from a stated preference choice model and represents constraints in supply and consumer awareness as well as dynamics in ZEV policy out to 2030. Results suggest that new ZEV market share from 2020 to 2030 does not substantially benefit from increased infrastructure. Even when electric charging and hydrogen refuelling access are simulated to reach “universally” available levels by 2030 ZEV sales do not rise by more than 1.5 percentage points above the baseline trajectory. On the other hand REPAC simulates ZEV market share rising as high as 30% by 2030 with strong ZEV-supportive policies even without the addition of charging or refuelling infrastructure. These findings stem from low consumer valuation of infrastructure found in the stated preference model. Results suggest that achieving ambitious ZEV sale targets requires a comprehensive suite of policies beyond a focus on charging and refuelling infrastructure.
Canadian Hydrogen Safety Program.
Sep 2005
Publication
This paper discusses the rationale structure and contents of the Canadian Hydrogen Safety Program developed by the Codes & Standards Working Group of the Canadian Transportation Fuel Cell Alliance consisting of representatives from industry academia government and regulators. The overall program objective is to facilitate acceptance of the products services and systems of the Canadian Hydrogen Industry by the Canadian Hydrogen Stakeholder Community to facilitate trade ensure fair insurance policies and rates ensure effective and efficient regulatory approval procedures and to ensure that the interests of the general public are accommodated. The Program consists of four projects including Comparative Quantitative Risk Assessment of Hydrogen and Compressed Natural Gas (CNG) Refuelling Stations; Computational Fluid Dynamics (CFD) Modelling Validation Calibration and Enhancement; Enhancement of Frequency and Probability Analysis and Consequence Analysis of Key Component Failures of Hydrogen Systems; and Fuel Cell Oxidant Outlet Hydrogen Sensor Project. The Program projects are tightly linked with the content of the IEA Task 19 Hydrogen Safety. The Program also includes extensive (destructive and non-destructive) testing of hydrogen components.
Defining Hazardous Zones – Electrical Classification Distances
Sep 2005
Publication
This paper presents an analysis of computational fluid dynamic models of compressed hydrogen gas leaks into the air under different conditions to determine the volume of the hydrogen/air mixture and the extents of the lower flammable limit. The necessary hole size was calculated to determine a reasonably expected hydrogen leak rate from a valve or a fitting of 5 and 20 cfm under 400 bars resulting in a 0.1 and 0.2 mm effective diameter hole respectively. The results were compared to calculated hypothetical volumes from IEC 60079-10 for the same mass flowrate and in most cases the CFD results produced significantly smaller hydrogen/air volumes than the IEC standard. Prescriptive electrical classification distances in existing standards for hydrogen and compressed natural gas were examined but they do not consider storage pressure and there appears to be no scientific basis for the distance determination. A proposed table of electrical classification distances incorporating hydrogen storage volume and pressure was produced based on the hydrogen LFL extents from a 0.2 mm diameter hole and the requirements of existing standards. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy model and turbulence models. Numerical results on hydrogen concentration predictions were obtained in the real industrial environment typical for a hydrogen refuelling or energy station.<br/><br/>
CFD Modeling of Hydrogen Dispersion Experiments for SAE J2578 Test Methods Development
Sep 2007
Publication
This paper discusses the results of validation of Computational Fluid Dynamics (CFD) modelling of hydrogen releases and dispersion inside a metal container imitating a single car garage based on experimental results. The said experiments and modelling were conducted as part of activities to predict fuel cell vehicles discharge flammability and potential build-up of hydrogen for the development of test procedures for the Recommended Practice for General Fuel Cell Vehicle Safety SAE J2578. The experimental setup included 9 hydrogen detectors located in each corner and in the middle of the roof of the container and a fan to ensure uniform mixing of the released hydrogen. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy effect and turbulence models. Obtained modelling results matched experimental data of a high-rate injection of hydrogen with fan-forced dispersion used to create near-uniform mixtures with a high degree of accuracy. This supports the conclusion that CFD modelling will be able to predict potential accumulation of hydrogen beyond the experimental conditions. CFD modelling of hydrogen concentrations has proven to be reliable effective and relatively inexpensive tool to evaluate the effects of hydrogen discharge from hydrogen powered vehicles or other hydrogen containing equipment.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
The Hydrogen Executive Leadership Panel (HELP) Initiative for Emergency Responder Training
Sep 2007
Publication
In close cooperation with their Canadian counterparts United States public safety authorities are taking the first steps towards creating a proper infrastructure to ensure the safe use of the new hydrogen fuel cells now being introduced commercially. Currently public safety officials are being asked to permit hydrogen fuel cells for stationary power and as emergency power backups for the telecommunications towers that exist everywhere. Consistent application of the safety codes is difficult – in part because it is new – yet it is far more complex to train emergency responders to deal safely with the inevitable hydrogen incidents. The US and Canadian building and fire codes and standards are similar but not identical. The US and Canadian rules are unlikely to be useful to other nations without modification to suit different regulatory systems. However emergency responder safety training is potentially more universal. The risks strategies and tactics are unlikely to differ much by region. The Hydrogen Executive Leadership Panel (HELP) made emergency responder safety training its first priority because the transition to hydrogen depends on keeping incidents small and inoffensive and the public and responders safe from harm. One might think that advising 1.2 million firefighters and 800000 law enforcement officers about hydrogen risks is no more complicated than adding guidance to a website. One would be wrong. The term “training” has specific legal implications which may vary by state. For hazardous materials federal requirements apply. Insurance companies place training requirements on the policies they sell to fire departments including the thousands of small all-volunteer departments which may operate as private corporations. Union contracts may define training and promotions may be based on satisfactorily completed certain levels of training. Emergency responders could no sooner learn how to extinguish a<br/>hydrogen fire by reading a webpage than a person could learn to ride a bicycle by reading a book. Procedures must be learned by listening reading and then doing. Regular practice is necessary. As new hydrogen applications are commercialized additional responder training may be necessary. This highlights another obstacle emergency responders’ ability to travel distances and take the time to undergo training. Historically fire academies established adjunct instructor programs and satellite academies to bring the training to firefighters. The large well-equipped academies are typically used for specialized training. States rarely have enough instructors and instructors often must take the time to create a course outline research each point and produce a program that is informative useful and holds the attention of responders. The challenge of training emergency responders seems next to impossible but public safety authorities are asked to tackle the impossible every day and a model exists to move forward in the U.S. Over the past few years the National Association of State Fire Marshals and U.S. Department of Transportation enlisted the help of emergency responders and industry to create a standardized approach to train emergency responders to deal with pipeline incidents. A curriculum and training materials were created and more than 26000 sets have been distributed for free to public safety agencies nationwide. More than 8000 instructors have been trained to use these materials that are now part of the regular training in 23 states. Using this model HELP intends to ensure that all emergency responders are trained to address hydrogen risks. The model and the rigorous scenario analysis and review used to developing the operational and technical training is addressed in this paper.
Risk-Informed Process and Tools for Permitting Hydrogen Fueling Stations
Sep 2007
Publication
The permitting process for hydrogen fueling stations varies from country to country. However a common step in the permitting process is the demonstration that the proposed fueling station meets certain safety requirements. Currently many permitting authorities rely on compliance with well known codes and standards as a means to permit a facility. Current codes and standards for hydrogen facilities require certain safety features specify equipment made of material suitable for hydrogen environment and include separation or safety distances. Thus compliance with the code and standard requirements is widely accepted as evidence of a safe design. However to ensure that a hydrogen facility is indeed safe the code and standard requirements should be identified using a risk-informed process that utilizes an acceptable level of risk. When compliance with one or more code or standard requirements is not possible an evaluation of the risk associated with the exemptions to the requirements should be understood and conveyed to the Authority Having Jurisdiction (AHJ). Establishment of a consistent risk assessment toolset and associated data is essential to performing these risk evaluations. This paper describes an approach for risk-informing the permitting process for hydrogen fueling stations that relies primarily on the establishment of risk-informed codes and standards. The proposed risk-informed process begins with the establishment of acceptable risk criteria associated with the operation of hydrogen fueling stations. Using accepted Quantitative Risk Assessment (QRA) techniques and the established risk criteria the minimum code and standard requirements necessary to ensure the safe operation of hydrogen facilities can be identified. Risk informed permitting processes exist in some countries and are being developed in others. To facilitate consistent risk-informed approaches the participants in the International Energy Agency (IEA) Task 19 on hydrogen safety are working to identify acceptable risk criteria QRA models and supporting data.
No more items...