Canada
Experimental Study on Accumulation of Helium Released into a Semi-confined Enclosure without Ventilation
Sep 2019
Publication
This paper examines the helium dispersion behaviour in a 16.6 m3 enclosure with a small opening in the floor and distributed leaks along the edges. Helium a simulant for hydrogen was injected near the center of the floor with an injection rate ranging from 2 to 50 standard liters per minute (Richardson number of 0.3–134) through an upward-facing nozzle. In a short-term transient the helium distribution predicted with the models of Baines & Turner (1969) and Worster & Huppert (1983) matched the measured distributions reasonably well. In a long-term transient the vertical helium profile always reached a steady state which consisted of a homogenous layer at the top overlaying a stratified layer at the bottom. The helium transients in the uniform layer predicted with the models of Lowesmith (2009) and Prasad & Yang (2010) assuming a vent was located in the ceiling were in good agreement with the measured transients.
Experimental Study and Model Predictions on Helium Release in an Enclosure with Single or Multiple Vents
Sep 2021
Publication
This paper presents experiments performed at Canadian Nuclear Laboratories (CNL) to examine the dispersion behaviour of helium in a polycarbonate enclosure that was representative of a residential parking garage. The purpose was to gain a better understanding of the effect of buoyancy- or winddriven natural ventilation on hydrogen dispersion behaviour. Although hydrogen dispersion studies have been reported extensively in the literature gaps still exist in predictive methods for hazard analysis. Helium a simulant for hydrogen was injected near the centre of the floor with a flow rate ranging from 5 to 75 standard litres per minute through an upward-facing nozzle resulting in an injection Richardson number ranging between 10-1 and 102. The location of the nozzle varied from the bottom of the enclosure to near the ceiling to examine the impact of the nozzle elevation on the development of a stratified layer in the upper region of the enclosure. When the injection nozzle was placed at a sufficiently low elevation the vertical helium profile always consisted of a homogenous layer at the top overlaying a stratified layer at the bottom. To simulate outdoor environmental conditions a fan was placed in front of each vent to examine the effect of opposing or assisting wind on the dispersion. The helium transients in the uniform layer predicted with analytical models were in good agreement with the measured transients for the tests with injection at lower elevations or with no wind. Model improvements are required for adequately predicting transients with significantly stratified profiles or with wind.
Hydrogen Strategy for Canada: Seizing the Opportunities for Hydrogen - A Call to Action
Dec 2020
Publication
For more than a century our nation’s brightest minds have been working on the technology to turn the invisible promise of hydrogen into tangible solutions. Canadian ingenuity and innovation has once again brought us to a pivotal moment. As we rebuild our economy from the impacts of COVID-19 and fight the existential threat of climate change the development of low-carbon hydrogen is a strategic priority for Canada. The time to act is now.<br/>The Hydrogen Strategy for Canada lays out an ambitious framework for actions that will cement hydrogen as a tool to achieve our goal of net-zero emissions by 2050 and position Canada as a global industrial leader of clean renewable fuels. This strategy shows us that by 2050 clean hydrogen can help us achieve our net-zero goal—all while creating jobs growing our economy and protecting our environment. This will involve switching from conventional gasoline diesel and natural gas to zero-emissions fuel sources taking advantage of new regulatory environments and embracing new technologies to give Canadians more choice of zero emission alternatives.<br/>As one of the top 10 hydrogen producers in the world today we are rich in the feedstocks that produce hydrogen. We are blessed with a strong energy sector and the geographic assets that will propel Canada to be a major exporter of hydrogen and hydrogen technologies. Hydrogen might be nature’s smallest molecule but its potential is enormous. It provides new markets for our conventional energy resources and holds the potential to decarbonize many sectors of our economy including resource extraction freight transportation power generation manufacturing and the production of steel and cement. This Strategy is a call to action. It will spur investments and strategic partnerships across the country and beyond our borders. It will position Canada to seize economic and environmental opportunities that exist coast to coast. Expanding our exports. Creating as many as 350000 good green jobs over the next three decades. All while dramatically reducing our greenhouse gas emissions. And putting a net-zero future within our reach.<br/>The importance of Canada’s resource industries and our clean technology sectors has been magnified during the pandemic. We must harness our combined will expertise and financial resources to fully seize the opportunities that hydrogen presents. This strategy is the product of three years of study and analysis including extensive engagement sessions where we heard from more than 1500 of our country’s leading experts and stakeholders. But its release is not the end of a process. This is only the beginning. Together we will use this Strategy to guide our actions and investments. By working with provinces and territories Indigenous partners and the private-sector and by leveraging our many advantages we will create the prosperity we all want protect the planet we all cherish and we will ensure we leave no one behind.
Bayesian Inference and Uncertainty Quantification for Hydrogen-Enriched and Lean-Premixed Combustion Systems
May 2021
Publication
Development of probabilistic modelling tools to perform Bayesian inference and uncertainty quantification (UQ) is a challenging task for practical hydrogen-enriched and low-emission combustion systems due to the need to take into account simultaneously simulated fluid dynamics and detailed combustion chemistry. A large number of evaluations is required to calibrate models and estimate parameters using experimental data within the framework of Bayesian inference. This task is computationally prohibitive in high-fidelity and deterministic approaches such as large eddy simulation (LES) to design and optimize combustion systems. Therefore there is a need to develop methods that: (a) are suitable for Bayesian inference studies and (b) characterize a range of solutions based on the uncertainty of modelling parameters and input conditions. This paper aims to develop a computationally-efficient toolchain to address these issues for probabilistic modelling of NOx emission in hydrogen-enriched and lean-premixed combustion systems. A novel method is implemented into the toolchain using a chemical reactor network (CRN) model non-intrusive polynomial chaos expansion based on the point collocation method (NIPCE-PCM) and the Markov Chain Monte Carlo (MCMC) method. First a CRN model is generated for a combustion system burning hydrogen-enriched methane/air mixtures at high-pressure lean-premixed conditions to compute NOx emission. A set of metamodels is then developed using NIPCE-PCM as a computationally efficient alternative to the physics-based CRN model. These surrogate models and experimental data are then implemented in the MCMC method to perform a two-step Bayesian calibration to maximize the agreement between model predictions and measurements. The average standard deviations for the prediction of exit temperature and NOx emission are reduced by almost 90% using this method. The calibrated model then used with confidence for global sensitivity and reliability analysis studies which show that the volume of the main-flame zone is the most important parameter for NOx emission. The results show satisfactory performance for the developed toolchain to perform Bayesian inference and UQ studies enabling a robust and consistent process for designing and optimising low-emission combustion systems.
The ‘Green’ Ni-UGSO Catalyst for Hydrogen Production under Various Reforming Regimes
Jun 2021
Publication
A new spinelized Ni catalyst (Ni-UGSO) using Ni(NO3)2·6H2O as the Ni precursor was prepared according to a less material intensive protocol. The support of this catalyst is a negative-value mining residue UpGraded Slag Oxide (UGSO) produced from a TiO2 slag production unit. Applied to dry reforming of methane (DRM) at atmospheric pressure T = 810 °C space velocity of 3400 mL/(h·g) and molar CO2/CH4 = 1.2 Ni-UGSO gives a stable over 168 h time-on-stream methane conversion of 92%. In this DRM reaction optimization study: (1) the best performance is obtained with the 10–13 wt% Ni load; (2) the Ni-UGSO catalysts obtained from two different batches of UGSO demonstrated equivalent performances despite their slight differences in composition; (3) the sulfur-poisoning resistance study shows that at up to 5.5 ppm no Ni-UGSO deactivation is observed. In steam reforming of methane (SRM) Ni-UGSO was tested at 900 °C and a molar ratio of H2O/CH4 = 1.7. In this experimental range CH4 conversion rapidly reached 98% and remained stable over 168 h time-on-stream (TOS). The same stability is observed for H2 and CO yields at around 92% and 91% respectively while H2/CO was close to 3. In mixed (dry and steam) methane reforming using a ratio of H2O/CH4 = 0.15 and CO2/CH4 = 0.97 for 74 h and three reaction temperature levels (828 °C 847 °C and 896 °C) CH4 conversion remains stable; 80% at 828 °C (26 h) 85% at 847 °C (24 h) and 95% at 896 °C (24 h). All gaseous streams have been analyzed by gas chromatography. Both fresh and used catalysts are analyzed by scanning electron microscopy-electron dispersive X-ray spectroscopy (SEM-EDXS) X-ray diffraction (XRD) and thermogravimetric analysis (TGA) coupled with mass spectroscopy (MS) and BET Specific surface. In the reducing environment of reforming such catalytic activity is mainly attributed to (a) alloys such as FeNi FeNi3 and Fe3Ni2 (reduction of NiFe2O4 FeNiAlO4) and (b) to the solid solution NiO-MgO. The latter is characterized by a molecular distribution of the catalytically active Ni phase while offering an environment that prevents C deposition due to its alkalinity.
Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production
Apr 2023
Publication
Hydrogen is known to be the carbon-neutral alternative energy carrier with the highest energy density. Currently more than 95% of hydrogen production technologies rely on fossil fuels resulting in greenhouse gas emissions. Water electrolysis is one of the most widely used technologies for hydrogen generation. Nuclear power a renewable energy source can provide the heat needed for the process of steam electrolysis for clean hydrogen production. This review paper analyses the recent progress in hydrogen generation via high-temperature steam electrolysis through solid oxide electrolysis cells using nuclear thermal energy. Protons and oxygen-ions conducting solid oxide electrolysis processes are discussed in this paper. The scope of this review report covers a broad range including the recent advances in material development for each component (i.e. hydrogen electrode oxygen electrode electrolyte interconnect and sealant) degradation mechanisms and countermeasures to mitigate them.
Modelling the Impacts of Hydrogen–Methane Blend Fuels on a Stationary Power Generation Engine
Mar 2023
Publication
To reduce greenhouse gas emissions from natural gas use utilities are investigating the potential of adding hydrogen to their distribution grids. This will reduce the carbon dioxide emissions from grid-connected engines used for stationary power generation and it may also impact their power output and efficiency. Promisingly hydrogen and natural gas mixtures have shown encouraging results regarding engine power output pollutant emissions and thermal efficiency in well-controlled on-road vehicle applications. This work investigates the effects of adding hydrogen to the natural gas fuel for a lean-burn spark-ignited four-stroke 8.9 liter eight-cylinder naturally aspirated engine used in a commercial stationary power generation application via an engine model developed in the GT-SUITETM modelling environment. The model was validated for fuel consumption air flow and exhaust temperature at two operating modes. The focus of the work was to assess the sensitivity of the engine’s power output brake thermal efficiency and pollutant emissions to blends of methane with 0–30% (by volume) hydrogen. Without adjusting for the change in fuel energy the engine power output dropped by approximately 23% when methane was mixed with 30% by volume hydrogen. It was found that increasing the fueling rate to maintain a constant equivalence ratio prevented this drop in power and reduced carbon dioxide emissions by almost 4.5%. In addition optimizing the spark timing could partially offset the increases in in-cylinder burned and unburned gas temperatures and in-cylinder pressures that resulted from the faster combustion rates when hydrogen was added to the natural gas. Understanding the effect of fuel change in existing systems can provide insight on utilizing hydrogen and natural gas mixtures as the primary fuel without the need for major changes in the engine.
Improvement of MC Method in SAE J2601 Hydrogen Refuelling Protocol Using Dual-zone Dual-Temperature Model
Sep 2023
Publication
The MC method refuelling protocol in SAE J2601 has been published by the Society of Automotive Engineers (SAE) in order to safely and quickly refuel hydrogen vehicles. For the calculation method of the pressure target to control the refuelling stop we introduced a dual-zone dual-temperature model that distinguishes the hydrogen temperature in the tank from the wall temperature to replace the dual-zone single-temperature model of the original MC method. The total amount of heat transferred by convection between hydrogen and the inner tank wall during the filling process was expressed as an equation of final hydrogen temperature final wall temperature final refuelling time tank inner surface area and the correction factor. The correction factor equations were determined by fitting simulation data from the 0D1D model where hydrogen inside the tank is lumped parameter model (0D) and the tank wall is a one-dimensional model (1D). For the correction factor of the linear equation its first-order coefficient and constant term have a linear relationship with the initial pressure of the storage tank and their R2 values obtained from the fitting are greater than 0.99. Finally we derived a new equation to calculate the final hydrogen temperature which can be combined with the 100% SOC inside the vehicle tank to determine the pressure target. The simulation results show that the final SOC obtained are all greater than 96% using the modified pressure target and the correction factor of the linear equation.
A Techno-economic Study of the Strategy for Hydrogen Transport by Pipelines in Canada
Jan 2023
Publication
Hydrogen as a clean zero-emission energy fuel will play a critical role in energy transition and achievement of the net-zero target in 2050. Hydrogen delivery is integral to the entire value chain of a full-scale hydrogen economy. This work conducted a systematic review and analysis of various hydrogen transportation methods including truck tankers for liquid hydrogen tube trailers for gaseous hydrogen and pipelines by identifying and ranking the main properties and affecting factors associated with each method. It is found that pipelines especially the existing natural gas pipelines provide a more efficient and cheaper means to transport hydrogen over long distances. Analysis was further conducted on Canadian natural gas pipeline network which has been operating for safe effective and efficient energy transport over six decades. The established infrastructure along with the developed operating and management experiences and skillful manpower makes the existing pipelines the best option for transport of hydrogen in either blended or pure form in the country. The technical challenges in repurposing the existing natural gas pipelines for hydrogen service were discussed and further work was analyzed.
A Review of the Status of Fossil and Renewable Energies in Southeast Asia and Its Implications on the Decarbonization of ASEAN
Mar 2022
Publication
The ten nations of Southeast Asia collectively known as ASEAN emitted 1.65 Gtpa CO2 in 2020 and are among the most vulnerable nations to climate change which is partially caused by anthropogenic CO2 emission. This paper analyzes the history of ASEAN energy consumption and CO2 emission from both fossil and renewable energies in the last two decades. The results show that ASEAN’s renewable energies resources range from low to moderate are unevenly distributed geographically and contributed to only 20% of total primary energy consumption (TPEC) in 2015. The dominant forms of renewable energies are hydropower solar photovoltaic and bioenergy. However both hydropower and bioenergy have substantial sustainability issues. Fossil energies depend heavily on coal and oil and contribute to 80% of TPEC. More importantly renewable energies’ contribution to TPEC has been decreasing in the last two decades despite the increasing installation capacity. This suggests that the current rate of the addition of renewable energy capacity is inadequate to allow ASEAN to reach net-zero by 2050. Therefore fossil energies will continue to be an important part of ASEAN’s energy mix. More tools such as carbon capture and storage (CCS) and hydrogen will be needed for decarbonization. CCS will be needed to decarbonize ASEAN’s fossil power and industrial plants while blue hydrogen will be needed to decarbonize hard-to-decarbonize industrial plants. Based on recent research into regional CO2 source-sink mapping this paper proposes six large-scale CCS projects in four countries which can mitigate up to 300 Mtpa CO2 . Furthermore this paper identifies common pathways for ASEAN decarbonization and their policy implications.
A Novel Approach for Quantifying Hydrogen Embrittlement Using Side-grooved CT Samples
Feb 2022
Publication
Aerospace parts made of high strength steels such as landing gears and helicopter transmissions are often electroplated to satisfy various engineering specifications. However plated parts are occasionnaly rejected because of hydrogen embrittlement and the industry has few means of evaluating quantitatively the actual damage caused by hydrogen. In the present article we developed a novel method to measure the stress intensity threshold for hydrogen embrittlement (Kth) in industrial plating conditions. The method consists in plating side-grooved CT samples in industrial plating baths and measuring Kth with an incremental step loading methodology. We validated the method with a benchmark case known to produce embrittlement (omitted post-plating bake) and we used the method on a test case for which the level of embrittlement was unknown (delayed bake). For the benchmark case we measured a Kth of 49.0 MPa m0.5 for non-baked samples. This value is significantly lower than the fracture toughness of the unplated material which is 63.8 MPa m0.5 . We conclude that this novel combination of geometry and test method is efficient in quantifying hydrogen embrittlement of samples plated in industrial conditions. For the test case the Kth are respectively 57.9 MPa m0.5 and 58.8 MPa m0.5 for samples baked 100 h and 4 h after plating. We conclude that delaying the post-plating bake does not cause hydrogen embrittlement in the studied conditions. Using a finite element hydrogen diffusion analysis we argue that the side grooves on CT samples increase the sensitivity to hydrogen embrittlement in comparison to smooth samples. In smooth samples a zone of plane stress at the surface of the specimen shields hydrogen from penetrating to the center of the specimen a phenomenon which is alleviated with machining side grooves.
Accumulation of Inert Impurities in a Polymer Electrolyte Fuel Cell System with Anode Recirculation and Periodic Purge: A Simple Analytical Model
Mar 2022
Publication
Anode recirculation with periodic purge is commonly used in polymer electrolyte fuel cell systems to control the accumulation of nitrogen water and other impurities that are present in the fuel or diffuse through the membrane from the cathode compartment. In this work we develop a simple generalized analytical model that simulates the time dependence of the accumulation of inert impurities in the anode compartment of such a system. It is shown that when there is transport out of the anode chamber the inert species is expected to accumulate exponentially until equilibrium is reached when the rate of inert entering the anode in the fuel supply and/or via crossover from the cathode is balanced by the rate of leakage and/or crossover to the cathode. The model is validated using recently published experimental data for the accumulation of N2 CH4 and CO2 in a recirculated system. The results show that nitrogen accumulation needs to be taken into account to properly adjust system parameters such as purge rate purge volume and recirculation rate. The use of this generalized analytical model is intended to aid the selection of these system parameters to optimize performance in the presence of inerts.
On the Bulk Transport of Green Hydrogen at Sea: Comparison Between Submarine Pipeline and Compressed and Liquefied Transport by Ship
Jan 2023
Publication
This paper compares six (6) alternatives for green hydrogen transport at sea. Two (2) alternatives of liquid hydrogen (LH2) by ship two (2) alternatives of compressed hydrogen (cH2) by ship and two (2) alternatives of hydrogen by pipeline. The ship alternatives study having hydrogen storage media at both end terminals to reduce the ships’ time at port or prescinding of them and reduce the immobilized capital. In the case of the pipeline new models are proposed by considering pressure costs. One scenario considers that there are compression stations every 500 km and the other one considers that there are none along the way. These alternatives are assessed under nine different scenarios that combine three distances: 100 km 2500 km and 5000 km; and three export rates of hydrogen 100 kt/y 1 Mt/y and 10 Mt/y. The results show including uncertainty bands that for the 100 km of distance the best alternative is the pipeline. For 2500 km and 100 kt/y the top alternative is cH2 shipping without storage facilities at the port terminals. For 2500 km and 1 Mt/y and for 5000 km and 100 kt/y the best alternatives are cH2 or LH2 shipping. For the remaining scenarios the best alternative is LH2 shipping.
Techno-economic Assessment of Low-carbon Hydrogen Export from Western Canada to Eastern Canada, the USA, the Asia-Pacific, and Europe
Dec 2021
Publication
The use of low-carbon hydrogen is being considered to help decarbonize several jurisdictions around the world. There may be opportunities for energy-exporting countries to supply energy-importing countries with a secure source of low-carbon hydrogen. The study objective is to assess the delivered cost of gaseous hydrogen export from Canada (a fossil-resource rich country) to the Asia-Pacific Europe and inland destinations in North America. There is a data gap on the feasibility of inter-continental export of hydrogen from an energy-producing jurisdiction to energy-consuming jurisdictions. This study is aimed at addressing this gap and includes an assessment of opportunities across the Pacific Ocean and the Atlantic Ocean based on fundamental engineering-based models. Techno-economics were used to determine the delivered cost of hydrogen to these destinations. The modelling considers energy material and capacity-sizing requirements for a five-stage supply chain comprising hydrogen production with carbon capture and storage hydrogen pipeline transportation liquefaction shipping and regasification at the destinations. The results show that the delivered cost of hydrogen to inland destinations in North America is between CAD$4.81/kg and CAD$6.03/kg to the Asia-Pacific from CAD$6.65/kg to CAD$6.99/kg and at least CAD$8.14/kg for exports to Europe. Delivering hydrogen by blending in existing long-distance natural gas pipelines reduced the delivered cost to inland destinations by 17%. Exporting ammonia to the Asia-Pacific provides cost savings of 28% compared to shipping liquified hydrogen. The developed information may be helpful to policymakers in government and the industry in making informed decisions about international trade of low-carbon hydrogen in both energy-exporting and energy-importing jurisdictions globally.
Thermodynamics and Kinetics of Hydriding and Dehydriding Reactions in Mg-based Hydrogen Storage Materials
Oct 2021
Publication
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity environmental benignity and high Clarke number characteristics. However the limited thermodynamics and kinetic properties pose major challenges for their engineering applications. Herein we review the recent progress in improving their thermodynamics and kinetics with an emphasis on the models and the influence of various parameters in the calculated models. Subsequently the impact of alloying composite and nano-crystallization on both thermodynamics and dynamics are discussed in detail. In particular the correlation between various modification strategies and the hydrogen capacity dehydrogenation enthalpy and temperature hydriding/dehydriding rates are summarized. In addition the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior. This review concludes with an outlook on the remaining challenge issues and prospects.
Cost and Capacity Requirements of Electrification or Renewable Gas Transition Options that Decarbonize Building Heating in Metro Vancouver, British Columbia
Jun 2022
Publication
Northern countries face a unique challenge in decarbonizing heating demands. This study compares two pathways to reduce carbon emissions from building heating by (1) replacing natural gas heaters with electric heat pumps or (2) replacing natural gas with renewable gas. Optimal annual system cost and capacity requirements for Metro Vancouver Canada are assessed for each pathway under nine scenarios. Results show that either pathway can be lower cost but the range of costs is more narrow for the renewable gas pathway. System cost is sensitive to heat demand with colder temperatures favouring the renewable gas pathway and milder temperatures favouring the electrification pathway. These results highlight the need for a better understanding of heating profiles and associated energy system requirements.
Large-scale Long-distance Land-based Hydrogen Transportation Systems: A Comparative Techno-economic and Greenhouse Gas Emission Assessment
Aug 2022
Publication
Interest in hydrogen as an energy carrier is growing as countries look to reduce greenhouse gas (GHG) emissions in hard-to-abate sectors. Previous works have focused on hydrogen production well-to-wheel analysis of fuel cell vehicles and vehicle refuelling costs and emissions. These studies use high-level estimates for the hydrogen transportation systems that lack sufficient granularity for techno-economic and GHG emissions analysis. In this work we assess and compare the unit costs and emission footprints (direct and indirect) of 32 systems for hydrogen transportation. Process-based models were used to examine the transportation of pure hydrogen (hydrogen pipeline and truck transport of gaseous and liquified hydrogen) hydrogen-natural gas blends (pipeline) ammonia (pipeline) and liquid organic hydrogen carriers (pipeline and rail). We used sensitivity and uncertainty analyses to determine the parameters impacting the cost and emission estimates. At 1000 km the pure hydrogen pipelines have a levelized cost of $0.66/kg H2 and a GHG footprint of 595 gCO2eq/kg H2. At 1000 km ammonia liquid organic hydrogen carrier and truck transport scenarios are more than twice as expensive as pure hydrogen pipeline and hythane and more than 1.5 times as expensive at 3000 km. The GHG emission footprints of pure hydrogen pipeline transport and ammonia transport are comparable whereas all other transport systems are more than twice as high. These results may be informative for government agencies developing policies around clean hydrogen internationally.
Potential for Natural Hydrogen in Quebec (Canada): A First Review
Mar 2024
Publication
The energy transition calls for natural hydrogen exploration with most occurrences discovered either inadvertently or more recently at the location of potentially diffusive circles observed from a change of vegetation cover at the surface. However some notable hydrogen occurrences are not directly associated with the presence of diffusive circles like the Bourakebougou field in Mali. Thus the objective of this work was to highlight geological areas that have some potential to find natural hydrogen in Quebec a Canadian province where no diffusive circles have yet been documented but which is rich in potential source rocks and where no exploration for natural hydrogen has been undertaken so far. A review of the different geological regions of Quebec was undertaken to highlight the relevant characteristics and geographical distribution of geological assemblages that may produce or have produced natural hydrogen in particular iron-rich rocks but also uranium-rich rocks supramature shales and zones where significant structural discontinuities are documented or suspected which may act as conduits for the migration of fluids of mantle origin. In addition to regional and local geological data an inventory of available geochemical data is also carried out to identify potential tracers or proxies to facilitate subsequent exploration efforts. A rating was then proposed based on the quality of the potential source rocks which also considers the presence of reservoir rocks and the proximity to end-users. This analysis allowed rating areas of interest for which fieldwork can be considered thus minimizing the exploratory risks and investments required to develop this resource. The size of the study area (over 1.5 million km2 ) the diversity of its geological environments (from metamorphic cratons to sedimentary basins) and their wide age range (from Archean to Paleozoic) make Quebec a promising territory for natural hydrogen exploration and to test the systematic rating method proposed here.
Two-stage Model Predictive Control for a Hydrogen-based Storage System Paired to a Wind Farm Towards Green Hydrogen Production for Fuel Cell Electric Vehicles
Jul 2022
Publication
This study proposes a multi-level model predictive control (MPC) for a grid-connected wind farm paired to a hydrogen-based storage system (HESS) to produce hydrogen as a fuel for commercial road vehicles while meeting electric and contractual loads at the same time. In particular the integrated system (wind farm + HESS) should comply with the “fuel production” use case as per the IEA-HIA report where the hydrogen production for fuel cell electric vehicles (FCEVs) has the highest unconditional priority among all the objectives. Based on models adopting mixed-integer constraints and dynamics the problem of external hydrogen consumer requests optimal load demand tracking and electricity market participation is solved at different timescales to achieve a long-term plan based on forecasts that then are adjusted at real-time. The developed controller will be deployed onto the management platform of the HESS which is paired to a wind farm established in North Norway within the EU funded project HAEOLUS. Numerical analysis shows that the proposed controller efficiently manages the integrated system and commits the equipment so as to comply with the requirements of the addressed scenario. The operating costs of the devices are reduced by 5% which corresponds to roughly 300 commutations saved per year for devices.
A Comparative Study of CFD-Modelling for Lean Premixed Hydrogen Deflagrations in Large-scale Vented Vessels
Sep 2021
Publication
Hydrogen combustion inside a post-accident nuclear reactor containment may pose a challenge to the containment integrity which could alter the fission-product release source term to the public. Combustion-generated overpressures may be relieved by venting to adjacent compartments through relief panels or existing openings. Thus an improved understanding of the propagation of lean hydrogen deflagrations in inter-connected compartments is essential for the development of appropriate management strategies. GOTHIC is a general purpose lumped parameter thermal-hydraulic code for solving multi-phase compressible flows which is accepted as an industry-standard code for containment safety analyses. Following the Fukushima accident the application of three-dimensional computational fluid dynamics methods to high-fidelity detailed analysis of hydrogen combustion processes has become more widespread. In this study a recently developed large-eddy-simulation (LES) capability is applied to the prediction of lean premixed hydrogen deflagrations in large-scale vented vessels of various configurations. The LES predictions are compared with GOTHIC predictions and experimental data obtained from the large-scale vented combustion test facility at the Canadian Nuclear Laboratories. The LES methodology makes use of a flamelet- or a progress-variable-based combustion model. An empirical burning velocity model is combined with an advanced finite-volume framework and a mesh-independent subfilter-scale model. Descriptions of the LES and GOTHIC modelling approaches used to simulate the hydrogen reactive flows in the vented vessels along with the experimental data sets are given. The potential and limitations of the lumped parameter and LES approaches for accurately describing lean premixed hydrogen deflagrations in vented vessels are discussed.
Efficiency, Economic and Environmental Impact Assessment of a Newly Developed Rail Engine using Hydrogen and Other Sustainable Fuel Blends
Jan 2023
Publication
Locomotives still use antiqued engines such as internal combustion engines operated by fossil fuels which cause global warming due to their significant emissions. This paper continues investigating the newly hybridized locomotive engine containing a gas turbine system solid oxide fuel cell system energy saving system and on-board hydrogen production system. This new engine is operated using five fuel blends composed of five alternative fuels such as hydrogen methane methanol ethanol and dimethyl ether. The current investigation involves exergy analysis exergo-economic analysis and exergo-environmental analysis to assess the engine from three perspectives: efficiency/irreversibility cost and environmental impact. The study results show that the net power of this new engine is 4948.6 kW and it has an exergetic efficiency of 62.7% according to the fuel and product principle. This engine weighs about 9 tons and costs about $10.2M with a levelized cost rate of 147 $/h and 14.06 mPt/h of overall component-related environmental rate. The average overall specific fuel and product exergy costs are about 37 $/GJ and 60 $/GJ and the minimum values are 13.3 $/GJ and 21.8 $/GJ using methane and hydrogen blend respectively. Also the average overall specific fuel and product exergo-environmental impact are about 15 and 23 mPt/MJ respectively. The on-board hydrogen production has an average exergy cost of 274 $/GJ and an environmental impact of 52 mPt/MJ. Hydrogen blended with methane or methanol is found to be more economic and has less environmental impact.
Coal Decarbonization: A State-of-the-art Review of Enhanced Hydrogen Production in Underground Coal Gasification
Aug 2022
Publication
The world is endowed with a tremendous amount of coal resources which are unevenly distributed in a few nations. While sustainable energy resources are being developed and deployed fossil fuels dominate the current world energy consumption. Thus low-carbon clean technologies like underground coal gasification (UCG) ought to play a vital role in energy supply and ensuring energy security in the foreseeable future. This paper provides a state-of-the-art review of the world's development of UCG for enhanced hydrogen production. It is revealed that the world has an active interest in decarbonizing the coal industry for hydrogen-oriented research in the context of UCG. While research is ongoing in multiple coal-rich nations China dominates the world's efforts in both industrial-scale UCG pilots and laboratory experiments. A variety of coal ranks were tested in UCG for enhanced hydrogen output and the possibilities of linking UCG with other prospective technologies had been proposed and critically scrutinized. Moreover it is found that transborder collaborations are in dire need to propel a faster commercialization of UCG in an ever-more carbon-conscious world. Furthermore governmental and financial support is necessary to incentivize further UCG development for large-scale hydrogen production.
Chile and its Potential Role Among the Most Affordable Green Hydrogen Producers in the World
Jul 2022
Publication
As result of the adverse effects caused by climate change the nations have decided to accelerate the transition of the energy matrix through the use of non-conventional sources free of polluting emissions. One of these alternatives is green hydrogen. In this context Chile stands out for the exceptional climate that makes it a country with a lot of renewable resources. Such availability of resources gives the nation clear advantages for hydrogen production strong gusts of wind throughout the country the most increased solar radiation in the world lower cost of production of electrical supplies among others. Due to this the nation would be between the lowest estimated cost for hydrogen production i.e. 1.5 USD/kg H2 approximately scenario that would place it as one of the cheapest green hydrogen producer in the world.
Greenhouse Gas Reduction Potential and Cost-effectiveness of Economy-wide Hydrogen-natural Gas Blending for Energy End Uses
Sep 2022
Publication
North American and European jurisdictions are considering repurposing natural gas infrastructure to deliver a lower carbon blend of natural gas and hydrogen; this paper evaluates the greenhouse gas reduction potential and cost-effectiveness of the repurposing. The analysis uses a bottom-up economy-wide energy-systems model of an emission-intensive jurisdiction Alberta Canada to evaluate 576 long-term scenarios from 2026 to 2050. Many scenarios were included to give the analysis broad international applicability and differ by sector hydrogen blending intensity carbon policy and hydrogen infrastructure development. Twelve hydrogen production technologies are compared in a long-term greenhouse gas and cost analysis including advanced technologies. Autothermal reforming with carbon capture provides both lower-carbon and lower-cost hydrogen compared to most other technologies in most futures even with high fugitive natural gas production emissions. Using hydrogen-natural gas blends for end-use energy applications eliminates 1–2% of economy-wide GHG emissions and marginal GHG abatement costs become negative at carbon prices over $300/tonne. The findings are useful for stakeholders expanding the international low-carbon hydrogen economy and governments engaged in formulating decarbonization policies and are considering hydrogen as an option.
Climate Action for the Shipping Industry: Some Perspectives on the Role of Nuclear Power in Maritime Decarbonization
Feb 2023
Publication
The shipping industry is a major enabler of globalization trade commerce and human welfare. But it is still heavily served by fossil fuels which make it one of the foremost greenhouse gas emitting sectors operational today. It is also one of the hardest to abate segments of the transport industry. As part of the economy-wide climate change mitigation and adaptation efforts it is necessary to consider a low carbon energy transition for this segment as well. This study examines the potential role of nuclear power and cogeneration towards greening this sector and identifies the associated techno-commercial and policy challenges associated with the transition. Quantitative estimates of the economics and investments associated with some of the possible routes are also presented. Alternatives such as nuclear-powered ships along commercial maritime trading routes ships working on nuclear derived green hydrogen ammonia or other sustainable power fuels will enable not only decarbonization of the shipping industry but also allow further diversification of the nuclear industry through non-electric applications of nuclear power and new sector coupling opportunities. In the run-up to the UNFCCC-COP28 meeting in 2023 in UAE nuclear equipped nations heavily engaged in and dependent on maritime trade and commerce should definitely consider nuclear driven decarbonization of shipping and some of the options presented here as part of their climate action strategies.
Effect of Anion Exchange Ionomer Content on Electrode Performance in AEM Water Electrolysis
Aug 2020
Publication
Anion exchange membrane water electrolysis (AEMWE) has acquired substantial consideration as a cost-effective hydrogen production technology. The anion ionomer content in the catalyst layers during hydrogen and oxygen evolution reaction (HER and OER) is of ultimate significance. Herein an in-situ half-cell analysis with reference electrodes was carried out for simultaneous potential measurements and identification of the influence of the anion exchange ionomer (AEI) content on anode and cathode performance. The measured half-cell potentials proved the influence of AEI content on the catalytic activity of HER and OER which was supported by the rotating disk electrode (RDE) measurements. Cathode overpotential of Ni/C was not negligible and more affected by the AEI content than anode with the optimized AEI content of 10 wt% while NiO anode OER overpotential was independent of the AEI content. For the same AEI content PGM catalysts showed higher electroactivity than Ni-based catalysts for HER and OER and the cathode catalyst's intrinsic activity is of high importance in the AEM electrolysis operation. Post-mortem analysis by SEM mapping of both AEI and catalyst distributions on the electrode surface showed the effect of AEI loading on the catalyst morphology which could be related to the electrode performance.
New Integrated Process for the Efficient Production of Methanol, Electrical Power, and Heating
Jan 2022
Publication
In this paper a novel process is developed to cogenerate 4741 kg/h of methanol 297.7 kW of electricity and 35.73 ton/h of hot water including a hydrogen purification system an absorption– compression refrigeration cycle (ACRC) a regenerative Organic Rankine Cycle (ORC) and parabolic solar troughs. The heat produced in the methanol reactor is recovered in the ORC and ACRC. Parabolic solar troughs provide thermal power to the methanol distillation tower. Thermal efficiencies of the integrated structure and the liquid methanol production cycle are 78.14% and 60.91% respectively. The process’s total exergy efficiency and irreversibility are 89.45% and 16.89 MW. The solar thermal collectors take the largest share of exergy destruction (34%) followed by heat exchangers (30%) and mixers (19%). Based on the sensitivity analysis D17 (mixture of H2 and low-pressure fuel gas before separation) was the most influential stream affecting the performance of the process. With the temperature decline of stream D17 from −139 to −149 °C the methanol production rate and the total thermal efficiency rose to 4741.2 kg/h and 61.02% respectively. Moreover the growth in the hydrogen content from 55% to 80% molar of the feed gas the flow rate of liquid methanol and the total exergy efficiency declined to 4487 kg/h and 86.05%.
Quantification of Temperature Dependence of Hydrogen Embrittlement in Pipeline Steel
Feb 2019
Publication
The effects of temperature on bulk hydrogen concentration and diffusion have been tested with the Devanathan–-Stachurski method. Thus a model based on hydrogen potential diffusivity loading frequency and hydrostatic stress distribution around crack tips was applied in order to quantify the temperature’s effect. The theoretical model was verified experimentally and confirmed a temperature threshold of 320 K to maximize the crack growth. The model suggests a nanoscale embrittlement mechanism which is generated by hydrogen atom delivery to the crack tip under fatigue loading and rationalized the ΔK dependence of traditional models. Hence this work could be applied to optimize operations that will prolong the life of the pipeline.
Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials
Aug 2015
Publication
Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides complex chemical hydride nanostructured carbon materials metal-doped carbon nanotubes metal-organic frameworks (MOFs) metal-doped metal organic frameworks covalent organic frameworks (COFs) and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.
Humidity Tolerant Hydrogen-oxygen Recombination Catalysts for Hydrogen Safety Applications
Sep 2017
Publication
Catalytic hydrogen-oxygen recombination is a non-traditional method to limit hydrogen accumulation and prevent combustion in the hydrogen industry. Outside of conventional use in the nuclear power industry this hydrogen safety technology can be applied when traditional hydrogen mitigation methods (i.e. active and natural ventilation) are not appropriate or when a back-up system is required. In many of these cases it is desirable for hydrogen to be removed without the use of power or other services which makes catalytic hydrogen recombination attractive. Instances where catalytic recombination of hydrogen can be utilized as a stand-alone or back-up measure to prevent hydrogen accumulation include radioactive waste storage (hydrogen generated from water radiolysis or material corrosion) battery rooms hydrogen-cooled generators hydrogen equipment enclosures etc.<br/>Water tolerant hydrogen-oxygen recombiner catalysts for non-nuclear applications have been developed at Canadian Nuclear Laboratories (CNL) through a program in which catalyst materials were selected prepared and initially tested in a spinning-basket type reactor to benchmark the catalyst’s performance with respect to hydrogen recombination in dry and humid conditions. Catalysts demonstrating high activity for hydrogen recombination were then selected and tested in trickle-bed and gas phase recombiner systems to determine their performance in more typical deployment conditions. Future plans include testing of selected catalysts after exposure to specific poisons to determine the catalysts’ tolerance for such poisons.
A Manganese Hydride Molecular Sieve for Practical Hydrogen Storage Under Ambient Conditions
Dec 2018
Publication
A viable hydrogen economy has thus far been hampered by the lack of an inexpensive and convenient hydrogen storage solution meeting all requirements especially in the areas of long hauls and delivery infrastructure. Current approaches require high pressure and/or complex heat management systems to achieve acceptable storage densities. Herein we present a manganese hydride molecular sieve that can be readily synthesized from inexpensive precursors and demonstrates a reversible excess adsorption performance of 10.5 wt% and 197 kgH2 m-3 at 120 bar at ambient temperature with no loss of activity after 54 cycles. Inelastic neutron scattering and computational studies confirm Kubas binding as the principal mechanism. The thermodynamically neutral adsorption process allows for a simple system without the need for heat management using moderate pressure as a toggle. A storage material with these properties will allow the DOE system targets for storage and delivery to be achieved providing a practical alternative to incumbents such as 700 bar systems which generally provide volumetric storage values of 40 kgH2 m-3 or less while retaining advantages over batteries such as fill time and energy density. Reasonable estimates for production costs and loss of performance due to system implementation project total energy storage costs roughly 5 times cheaper than those for 700 bar tanks potentially opening doors for increased adoption of hydrogen as an energy vector.
Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070
Mar 2020
Publication
Jeffrey Rissman,
Chris Bataille,
Eric Masanet,
Nate Aden,
William R. Morrow III,
Nan Zhou,
Neal Elliott,
Rebecca Dell,
Niko Heeren,
Brigitta Huckestein,
Joe Cresko,
Sabbie A. Miller,
Joyashree Roy,
Paul Fennell,
Betty Cremmins,
Thomas Koch Blank,
David Hone,
Ellen D. Williams,
Stephane de la Rue du Can,
Bill Sisson,
Mike Williams,
John Katzenberger,
Dallas Burtraw,
Girish Sethi,
He Ping,
David Danielson,
Hongyou Lu,
Tom Lorber,
Jens Dinkel and
Jonas Helseth
Fully decarbonizing global industry is essential to achieving climate stabilization and reaching net zero greenhouse gas emissions by 2050–2070 is necessary to limit global warming to 2 °C. This paper assembles and evaluates technical and policy interventions both on the supply side and on the demand side. It identifies measures that employed together can achieve net zero industrial emissions in the required timeframe. Key supply-side technologies include energy efficiency (especially at the system level) carbon capture electrification and zero-carbon hydrogen as a heat source and chemical feedstock. There are also promising technologies specific to each of the three top-emitting industries: cement iron & steel and chemicals & plastics. These include cement admixtures and alternative chemistries several technological routes for zero-carbon steelmaking and novel chemical catalysts and separation technologies. Crucial demand-side approaches include material-efficient design reductions in material waste substituting low-carbon for high-carbon materials and circular economy interventions (such as improving product longevity reusability ease of refurbishment and recyclability). Strategic well-designed policy can accelerate innovation and provide incentives for technology deployment. High-value policies include carbon pricing with border adjustments or other price signals; robust government support for research development and deployment; and energy efficiency or emissions standards. These core policies should be supported by labeling and government procurement of low-carbon products data collection and disclosure requirements and recycling incentives. In implementing these policies care must be taken to ensure a just transition for displaced workers and affected communities. Similarly decarbonization must complement the human and economic development of low- and middle-income countries.
Alloy and Composition Dependence of Hydrogen Embrittlement Susceptibility in High-strength Steel Fasteners
Jun 2017
Publication
High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility which increases significantly above 1200 MPa and is characterized by a ductile--brittle transition. For a given concentration of hydrogen and at equal strength the critical strength above which the ductile–brittle transition begins can vary due to second-order effects of chemistry tempering temperature and sub-microstructure. Additionally non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa non-conforming quality is often the root cause of real-life failures.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Recovery Through Reform: Advancing a Hydrogen Economy While Minimizing Fossil Fuel Subsidies
Feb 2021
Publication
This brief explores recent momentum on hydrogen and evaluates potential implications for subsidies for fossil fuel-based hydrogen given the government's commitments on fossil fuel subsidies.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
- Ensure that any subsidies for hydrogen are in line with the government’s commitments to phase out inefficient fossil fuel subsidies by 2025 and meet net-zero by 2050.
- Thoroughly evaluate the potential efficiency of subsidies for hydrogen against robust social environmental and economic criteria. • Improve transparency by publicly reporting on direct spending and tax expenditures for hydrogen production.
- Follow international best practices being set by Canada’s peers. For example Germany and Spain have laid out hydrogen strategies prioritizing green hydrogen.
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Comparative Assessment of Blue Hydrogen from Steam Methane Reforming, Autothermal Reforming, and Natural Gas Decomposition Technologies for Natural Gas-producing Regions
Jan 2022
Publication
Interest in blue hydrogen production technologies is growing. Some researchers have evaluated the environmental and/or economic feasibility of producing blue hydrogen but a holistic assessment is still needed. Many aspects of hydrogen production have not been investigated. There is very limited information in the literature on the impact of plant size on production and the extent of carbon capture on the cost and life cycle greenhouse gas (GHG) emissions of blue hydrogen production through various production pathways. Detailed uncertainty and sensitivity analyses have not been included in most of the earlier studies. This study conducts a holistic comparative cost and life cycle GHG emissions’ footprint assessment of three natural gas-based blue hydrogen production technologies – steam methane reforming (SMR) autothermal reforming (ATR) and natural gas decomposition (NGD) to address these research gaps. A hydrogen production plant capacity of 607 tonnes per day was considered. For SMR based on the percentage of carbon capture and capture points we considered two scenarios SMR-52% (indicates 52% carbon capture) and SMR-85% (indicates 85% carbon capture). A scale factor was developed for each technology to understand the hydrogen production cost with a change in production plant size. Hydrogen cost is 1.22 1.23 2.12 1.69 2.36 1.66 and 2.55 $/kg H2 for SMR ATR NGD SMR-52% SMR-85% ATR with carbon capture and sequestration (ATR-CCS) and NGD with carbon capture and sequestration (NGD-CCS) respectively. The results indicate that when uncertainty is considered SMR-52% and ATR are economically preferable to NGD and SMR-85%. SMR-52% could outperform ATR-CCS when the natural gas price decreases and the rate of return increases. SMR-85% is the least attractive pathway; however it could outperform NGD economically when CO2 transportation cost and natural gas price decrease. Hydrogen storage cost significantly impacts the hydrogen production cost. SMR-52% SMR-85% ATR-CCS and NGD-CCS have scale factors of 0.67 0.68 0.54 and 0.65 respectively. The hydrogen cost variation with capacity shows that operating SMR-52% and ATR-CCS above hydrogen capacity of 200 tonnes/day is economically attractive. Blue hydrogen from autothermal reforming has the lowest life cycle GHG emissions of 3.91 kgCO2eq/kg H2 followed by blue hydrogen from NGD (4.54 kgCO2eq/kg H2) SMR-85% (6.66 kgCO2eq/kg H2) and SMR-52% (8.20 kgCO2eq/kg H2). The findings of this study are useful for decision-making at various levels.
Nickel-Based Electrocatalysts for Water Electrolysis
Feb 2022
Publication
Currently hydrogen production is based on the reforming process leading to the emission of pollutants; therefore a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g. solar and eolic sources) would facilitate clean energy storage. However the electrocatalysts currently required for water electrolysis are noble metals making this potential option expensive and inaccessible for industrial applications. Therefore there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms structure and morphology. Even though some works tend to be contradictory they have lit up the path for the development of efficient nickel-based electrocatalysts. For these reasons a review of recent progress is presented herein.
A Review of Heavy-Duty Vehicle Powertrain Technologies Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles
Jun 2021
Publication
Greenhouse gas emissions from the freight transportation sector are a significant contributor to climate change pollution and negative health impacts because of the common use of heavy-duty diesel vehicles (HDVs). Governments around the world are working to transition away from diesel HDVs and to electric HDVs to reduce emissions. Battery electric HDVs and hydrogen fuel cell HDVs are two available alternatives to diesel engines. Each diesel engine HDV battery-electric HDV and hydrogen fuel cell HDV powertrain has its own advantages and disadvantages. This work provides a comprehensive review to examine the working mechanism performance metrics and recent developments of the aforementioned HDV powertrain technologies. A detailed comparison between the three powertrain technologies highlighting the advantages and disadvantages of each is also presented along with future perspectives of the HDV sector. Overall diesel engine in HDVs will remain an important technology in the short-term future due to the existing infrastructure and lower costs despite their high emissions while battery-electric HDV technology and hydrogen fuel cell HDV technology will be slowly developed to eliminate their barriers including costs infrastructure and performance limitations to penetrate the HDV market.
Van der Waals Heterostructures - Recent Progress in Electrode Materials for Clean Energy Applications
Jul 2021
Publication
The unique layered morphology of van der Waals (vdW) heterostructures give rise to a blended set of electrochemical properties from the 2D sheet components. Herein an overview of their potential in energy storage systems in place of precious metals is conducted. The most recent progress on vdW electrocatalysis covering the last three years of research is evaluated with an emphasis on their catalytic activity towards the oxygen reduction reaction (ORR) oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). This analysis is conducted in pair with the most active Pt-based commercial catalyst currently utilized in energy systems that rely on the above-listed electrochemistry (metal–air battery fuel cells and water electrolyzers). Based on current progress in HER catalysis that employs vdW materials several recommendations can be stated. First stacking of the two types vdW materials with one being graphene or its doped derivatives results in significantly improved HER activity. The second important recommendation is to take advantage of an electronic coupling when stacking 2D materials with the metallic surface. This significantly reduces the face-to-face contact resistance and thus improves the electron transfer from the metallic surface to the vdW catalytic plane. A dual advantage can be achieved from combining the vdW heterostructure with metals containing an excess of d electrons (e.g. gold). Despite these recent and promising discoveries more studies are needed to solve the complexity of the mechanism of HER reaction in particular with respect to the electron coupling effects (metal/vdW combinations). In addition more affordable synthetic pathways allowing for a well-controlled confined HER catalysis are emerging areas.
CFD Model Based Ann Prediction of Flammable Vapor Colour Formed by Liquid Hydrogen Spill
Sep 2021
Publication
Unintended releases can occur during the production storage transportation and filling of liquid hydrogen which may cause devastating consequences. In the present work liquid hydrogen leak is modeled in ANSYS Fluent with the numerical model validated using the liquid hydrogen spill test data. A three-layer artificial neural network (ANN) model is built in which the wind speed ground temperature leakage time and leakage rate are taken as the inputs the horizontal diffusion distance and vertical diffusion distance of combustible gas as the outputs of the ANN. The representative sample data derived from the detailed calculation results of the numerical model are selected via the orthogonal experiment method to train and verify the back propagation (BP) neural network. Comparing the calculation results of the formula fitting with the sample data the results show that the established ANN model can quickly and accurately predict the horizontal and vertical diffusion distance of flammable vapor cloud relatively. The influences of four parameters on the horizontal hazard distance as well as vertical hazard height are predicted and analyzed in the case of continuous overflow of liquid hydrogen using the ANN model.
Valorization and Sequestration of Hydrogen Gas from Biomass Combustion in Solid Waste Incineration NaOH Oxides of Carbon Entrapment Model (SWI-NaOH-OCE Model)
Dec 2019
Publication
The valorization of biomass-based solid wastes for both geotechnical engineering purposes and energy needs has been reviewed to achieve eco-friendly eco-efficient and sustainable engineering and reengineering of civil engineering materials and structures. The objective of this work was to review the procedure developed by SWI-NaOH-OCE Model for the valorization of biomass through controlled direct combustion and the sequestration of hydrogen gas for energy needs. The incineration model gave a lead to the sequestration of emissions released during the direct combustion of biomass and the subsequent entrapment of oxides of carbon and the eventual release of abundant hydrogen gas in the entrapment jar. The generation of geomaterials ash for the purpose of soil stabilization concrete and asphalt modification has encouraged greenhouse emissions but eventually the technology that has been put in place has made it possible to manage and extract these emissions for energy needs. The contribution from researchers has shown that hydrogen sequestration from other sources requires high amount of energy because of the lower energy states of the compounds undergoing thermal decomposition. But this work has presented a more efficient approach to release hydrogen gas which can easily be extracted and stored to meet the energy needs of the future as fuel cell batteries to power vehicles mobile devices robotic systems etc. More so the development of MXene as an exfoliated two-dimensional nanosheets with permeability and filtration selectivity properties which are connected to its chemical composition and structure used in hydrogen gas extraction and separation from its molecular combination has presented an efficient procedure for the production and management of hydrogen gas for energy purposes.
Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle
Apr 2016
Publication
The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH) is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle) and solar-to-fuel energy conversion efficiency (ηsolar´to´fuel) attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar´to´fuel both increase with decreasing TH due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance in the case where TH = 2280 K ηcycle = 24.4% and ηsolar´to´fuel = 29.5% (without heat recuperation) while ηcycle = 31.3% and ηsolar´to´fuel = 37.8% (with 40% heat recuperation).
A Methodology for Assessing the Sustainability of Hydrogen Production from Solid Fuels
May 2010
Publication
A methodology for assessing the sustainability of hydrogen production using solid fuels is introduced in which three sustainability dimensions (ecological sociological and technological) are considered along with ten indicators for each dimension. Values for each indicator are assigned on a 10-point scale based on a high of 1 and a low of 0 depending on the characteristic of the criteria associated with each element or process utilizing data reported in the literature. An illustrative example is presented to compare two solid fuels for hydrogen production: coal and biomass. The results suggest that qualitative sustainability indicators can be reasonably defined based on evaluations of system feasibility and that adequate flexibility and comprehensiveness is provided through the use of ten indicators for each of the dimensions for every process or element involved in hydrogen production using solid fuels. Also the assessment index values suggest that biomasses have better sustainability than coals and that it may be advantageous to use coals in combination with biomass to increase their ecological and social sustainability. The sustainability assessment methodology can be made increasingly quantitative and is likely extendable to other energy systems but additional research and development is needed to lead to a more fully developed approach.
Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia
Dec 2022
Publication
Green ammonia has potential as a zero-emissions energy vector in applications such as energy storage transmission and distribution and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land small-scale power-to-ammonia (P2A) production system with a target nominal output of 15 tonnes of ammonia per day which will use an 8 MW offshore turbine system off the coast of Nova Scotia Canada as the main power source. The P2A system consists of a reverse osmosis system a proton exchange membrane (PEM) electrolyser a hydrogen storage tank a nitrogen generator a set of compressors and heat exchangers an autothermal Haber-Bosch reactor and an ammonia storage tank. The system uses an electrical grid as a back-up for when the wind energy is insufficient as the process assumes a steady state. Two scenarios were analyzed with Scenario 1 producing a steady state of 15 tonnes of ammonia per day and Scenario 2 being one that switched production rates whenever wind speeds were low to 55% the nominal capacity. The results show that the grid connected P2A system has significant emissions for both scenarios which is larger than the traditional fossil-fuel based ammonia production when using the grid in provinces like Nova Scotia even if it is just a back-up during low wind power generation. The levelized cost of ammonia (LCOA) was calculated to be at least 2323 CAD tonne−1 for both scenarios which is not cost competitive in this small production scale. Scaling up the whole system reducing the reliance on the electricity grid increasing service life and decreasing windfarm costs could reduce the LCOA and make this P2A process more cost competitive.
The Role of the Argon and Helium Bath Gases on the Detonation Structure of H2/)2 Mixture
Sep 2021
Publication
Recent modeling efforts of non-equilibrium effects in detonations have suggested that hydrogen-based detonations may be affected by vibrational non-equilibrium of the hydrogen and oxygen molecules effects which could explain discrepancies of cell sizes measured experimentally and calculated without relaxation effects. The present study addresses the role of vibrational relaxation in 2H2/O2 detonations by considering two-bath gases argon and helium. These two gases have the same thermodynamic and kinetic effects when relaxation is neglected. However due to the bath gases differences in molecular weight and reduced mass differences which affect the molecular collisions relaxation rates can be changed by approximately 50-70%. Experiments were performed in a narrow channel in mixtures of 2H2/O2/7Ar and 2H2/O2/7He to evaluate the role of the bath gas on detonation cellular structures. The experiments showed differences in velocity deficits and cell sizes for experimental conditions keeping the induction zone length constant in each of the mixtures. These differences were negligible in sensitive mixtures but increased with the increase in velocity deficits while the cell sizes approaching the channel dimensions. Near the limits differences of cell size in two mixtures approached a factor of 2. These differences were however reconciled by accounting for the viscous losses to the tube walls evaluated using a modified version of Mirels' laminar boundary layer theory and generalized Chapman-Jouguet theory for eigenvalue detonations. The experiments suggest that there is an influence of relaxation effects on the cellular structure of detonations which is more sensitive to wall boundary conditions. However the previous works showed that the impact of vibrational non-equilibrium in a mixture of H2/Air is more visible due to the effects of N2 in the air slowest to relax. Previous discrepancies suggested to be indicative of relaxation effects should be reevaluated by the inclusion of wall loss effects.
AMHYCO Project - Towards Advanced Accident Guidelines for Hydrogen Safety in Nuclear Power Plants
Sep 2021
Publication
Severe accidents in nuclear power plants are potentially dangerous to both humans and the environment. To prevent and/or mitigate the consequences of these accidents it is paramount to have adequate accident management measures in place. During a severe accident combustible gases — especially hydrogen and carbon monoxide — can be released in significant amounts leading to a potential explosion risk in the nuclear containment building. These gases need to be managed to avoid threatening the containment integrity which can result in the releases of radioactive material into the environment. The main objective of the AMHYCO project is to propose innovative enhancements in the way combustible gases are managed in case of a severe accident in currently operating reactors. For this purpose the AMHYCO project pursues three specific activities including experimental investigations of relevant phenomena related to hydrogen / carbon monoxide combustion and mitigation with PARs (Passive Autocatalytic Recombiners) improvement of the predictive capabilities of analysis tools used for explosion hazard evaluation inside the reactor containment as well as enhancement of the Severe Accident Management Guidelines (SAMGs) with respect to combustible gases risk management based on theoretical and experimental results. Officially launched on 1 October 2020 AMHYCO is an EU-funded Horizon 2020 project that will last 4 years from 2020 to 2024. This international project consists of 12 organizations (six from European countries and one from Canada) and is led by the Universidad Politécnica de Madrid (UPM). AMHYCO will benefit from the worldwide experts in combustion science accident management and nuclear safety in its Advisory Board. The paper will give an overview of the work program and planned outcome of the project.
Safety Compliance Verification of Fuel Cell Electric Vehicle Exhaust
Sep 2021
Publication
NREL has been developing compliance verification tools for allowable hydrogen levels prescribed by the Global Technical Regulation Number 13 (GTR-13) for hydrogen fuel cell electric vehicles (FCEVs). As per GTR-13 FCEV exhaust is to remain below 4 vol% H2 over a 3-second moving average and shall not at any time exceed 8 vol% H2 and that this requirement is to be verified with an analyzer that has a response time of less than 300 ms. To be enforceable a means to verify regulatory requirements must exist. In response to this need NREL developed a prototype analyzer that meets the GTR metrological requirements for FCEV exhaust analysis. The analyzer was tested on a commercial fuel cell electric vehicle (FCEV) under simulated driving conditions using a chassis dynamometer at the Emissions Research and Measurement Section of Environment and Climate Change Canada and FCEV exhaust was successfully profiled. Although the prototype FCEV Exhaust Analyzer met the metrological requirements of GTR-13 the stability of the hydrogen sensor was adversely impacted by condensed water in the sample gas. FCEV exhaust is at an elevated temperature and nearly saturated with water vapor. Furthermore condensed water is present in the form of droplets. Condensed water in the sample gas collected from FCEV exhaust can accumulate on the hydrogen sensing element which would not only block access of hydrogen to the sensing element but can also permanently damage the sensor electronics. In the past year the design of the gas sampling system was modified to mitigate against the transport of liquid water to the sensing element. Laboratory testing confirmed the effectiveness of the modified sampling system water removal strategy while maintaining the measurement range and response time required by GTR-13. Testing of the upgraded analyzer design on an FCEV operating on a chassis dynamometer is scheduled for the summer of 2021.
Numerical Prediction of Lean Premixed Hydrogen Deflagrations in Vented Vessels
Sep 2021
Publication
In water-cooled nuclear power plants hydrogen gas can be generated by various mechanisms during an accident. In case combustion of the resulting hydrogen-air mixture within the facility occurs existing containment structures may be compromised and excessive radio-active material can be released to the environment. Thus an improved understanding of the propagation of lean hydrogen deflagrations within buildings and structures is essential for the development of appropriate accident management strategies associated with these scenarios. Following the accident in Fukushima Japan the application of three-dimensional computational fluid dynamics methods to high-fidelity detailed analysis of hydrogen combustion processes in both closed and vented vessels has become more widespread. In this study a recently developed large-eddy-simulation (LES) capability is applied to the prediction of lean premixed hydrogen deflagrations in vented vessels. The LES methodology makes use of a flamelet- or progress-variable-based combustion model coupled with an empirical burning velocity model (BVM) an anisotropic block-based adaptive mesh refinement (AMR) strategy an accurate finite-volume numerical scheme and a mesh independent subfilter-scale (SFS) model. Several different vessel and vent sizes and configurations are considered herein. The LES predictions are compared to experimental data obtained from the Large-Scale Vented Combustion Test Facility (LSVCTF) of the Canadian Nuclear Laboratories (CNL) with both quiescent and turbulent initial conditions. Following descriptions of the LES models LES results for both variable chamber sizes and single- and double-vent cases are presented to illustrate the capabilities of the proposed computational approach. In particular the predicted time histories of pressure as well as the maximum overpressure achieved within the vessels and combustion compartments are compared to those from the LSVCTF experiments. The influences of the modelled ignition process initial turbulence and mesh resolution on the LES results are also discussed. The findings highlight the potential and limitations of the proposed LES approach for accurately describing lean premixed hydrogen deflagrations within vented vessels.
Heat Transfer Models for Refueling Safety of Hydrogen Vehicle
Sep 2021
Publication
Due to the simple structure and quick refueling process of the compressed hydrogen storage tank it is widely used in fuel cell vehicles at present. However temperature rise may lead to a safety problem during charging of a compressed hydrogen storage tank. To ensure the refueling safety the thermal effects need to be studied carefully during hydrogen refueling process. In this paper based on the mass and energy balance equations a general heat transfer model for refueling process of compressed hydrogen storage tank is established. According to the geometric model of the tank wall structure we have built three lumped parameter models: single-zone (hydrogen) dual-zone (hydrogen and tank wall) and triple-zone (hydrogen tank wall liner and shell) model. These three lumped parameter models are compared with U.S. Naval gas charging model and SAE MC method based refueling model. Under adiabatic and diathermic conditions four models are built in Matlab/Simulink software to simulate the hydrogen refueling process under corresponding conditions. These four models are: single-zone singletemperature (hydrogen) dual-zone single-temperature (hydrogen) dual-zone dual-temperature (hydrogen and tank wall temperatures) and triple-zone triple-temperature (hydrogen tank wall liner and tank wall shell temperatures). By comparing the analytical solution and numerical solution the temperature rise of the compressed hydrogen storage tank can be described. The analytical and numerical solutions on the heat transfer during hydrogen refueling process will provide theoretical guidance at actual refueling station so as to improve the refueling efficiency and to enhance the refueling safety.
A Large-Scale Study on the Effect of Ambient Conditions on Hydrogen Recombiner Induced Ignition
Sep 2019
Publication
Hydrogen recombiners (known in the nuclear industry as passive autocatalytic recombiners-PARs) in general can be utilized for mitigation of hydrogen in controlled areas where there is potential for hydrogen release and ventilation is not practical. Recombiners are widely implemented in the nuclear industry however there are other applications of recombiners outside the nuclear industry that have not yet been explored practically. The most notable benefit of recombiners over conventional hydrogen mitigation measures is their passive capability where power or operator actions are not needed for the equipment to remove hydrogen when it is present.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
Development of Risk Mitigation Guidance for Sensor Placement Inside Mechanically Ventilated Enclosures – Phase 1
Sep 2019
Publication
Guidance on Sensor Placement was identified as the top research priority for hydrogen sensors at the 2018 HySafe Research Priority Workshop on hydrogen safety in the category Mitigation Sensors Hazard Prevention and Risk Reduction. This paper discusses the initial steps (Phase 1) to develop such guidance for mechanically ventilated enclosures. This work was initiated as an international collaborative effort to respond to emerging market needs related to the design and deployment equipment for hydrogen infrastructure that is often installed in individual equipment cabinets or ventilated enclosures. The ultimate objective of this effort is to develop guidance for an optimal sensor placement such that when integrated into a facility design and operation will allow earlier detection at lower levels of incipient leaks leading to significant hazard reduction. Reliable and consistent early warning of hydrogen leaks will allow for the risk mitigation by reducing or even eliminating the probability of escalation of small leaks into large and uncontrolled events. To address this issue a study of a real-world mechanically ventilated enclosure containing GH2 equipment was conducted where CFD modelling of the hydrogen dispersion (performed by AVT and UQTR and independently by the JRC) was validated by the NREL Sensor laboratory using a Hydrogen Wide Area Monitor (HyWAM) consisting of a 10-point gas and temperature measurement analyzer. In the release test helium was used as a hydrogen surrogate. Expansion of indoor releases to other larger facilities (including parking structures vehicle maintenance facilities and potentially tunnels) and incorporation into QRA tools such as HyRAM is planned for Phase 2. It is anticipated that results of this work will be used to inform national and international standards such as NFPA 2 Hydrogen Technologies Code Canadian Hydrogen Installation Code (CHIC) and relevant ISO/TC 197 and CEN documents.
No more items...