China, People’s Republic
Risk Assessment of Hydrogen Fuel System Leakage in Ships Based on Noisy-OR Gate Model Bayesian Network
Mar 2025
Publication
To mitigate the risk of hydrogen leakage in ship fuel systems powered by internal combustion engines a Bayesian network model was developed to evaluate the risk of hydrogen fuel leakage. In conjunction with the Bow-tie model fuzzy set theory and the Noisy-OR Gate model an in-depth analysis was also conducted to examine both the causal factors and potential consequences of such incidents. The Bayesian network model estimates the likelihood of hydrogen leakage at approximately 4.73 × 10−4 and identifies key risk factors contributing to such events including improper maintenance procedures inadequate operational protocols and insufficient operator training. The Bowtie model is employed to visualize the causal relationships between risk factors and their potential consequences providing a clear structure for understanding the events leading to hydrogen leakage. Fuzzy set theory is used to address the uncertainties in expert judgments regarding system parameters enhancing the robustness of the risk analysis. To mitigate the subjectivity inherent in root node probabilities and conditional probability tables the NoisyOR Gate model is introduced simplifying the determination of conditional probabilities and improving the accuracy of the evaluation. The probabilities of flash or pool fires jet fires and vapor cloud explosions following a leakage are calculated as 4.84 × 10−5 5.15 × 10−5 and 4.89 × 10−7 respectively. These findings highlight the importance of strengthening operator training and enforcing stringent maintenance protocols to mitigate the risks of hydrogen leakage. The model provides a valuable framework for safety evaluation and leakage risk management in hydrogen-powered ship fuel systems.
Optimal Operation Strategy for Multi-energy Systems Considering Renewable Energy Fluctuation and Carbon Emission
Jun 2025
Publication
Multi-energy systems (MESs) can address issues such as low renewable energy utilization and power imbalances by optimizing the integration of various energy sources. This paper proposes an optimization operation strategy for MES to regulate the hydrogen and battery storage system (HBRS) based on carbon emission factors (CEFs). Insufficient renewable energy utilization caused by reverse peak regulation can be addressed by guiding the optimal output of HBRS through this model thereby achieving multi-energy complementarity. The CEF is used to balance the output of the HBRS to achieve a low-carbon economic operating system. First the fluctuation of renewable energy is decomposed and reconstructed. Subsequently The HBRS system is utilized to smooth out the fluctuations caused by different frequencies of new energy and then the CEF is used to promote the output of the low-carbon subsystem. Finally comparative verification is conducted across validation cases to demonstrate the effectiveness of the proposed model and the optimization strategy.
Experimental Investigation of a 10 kW Photovoltaic Power System and Lithium Battery Energy Storage System for Off-grid Electro-hydrogen Coupling
Feb 2025
Publication
The burgeoning adoption of photovoltaic and wind energy has limitations of volatility and intermittency which hinder their application. Electro-hydrogen coupling energy storage systems emerge as a promising solution to address this issue. This technology combines renewable energy power generation with hydrogen production through water electrolysis and hydrogen fuel cell power generation effectively enabling the consumption and peak load management of renewable energy sources. This paper presents a power system with a 10 kW photovoltaic system and lithium battery energy storage system designed for hydrogen-electric coupled energy storage validated through the physical experiments. The results demonstrate the system's effectiveness in mitigating the impact of randomness and volatility in photovoltaic power generation. Moreover the energy management system can adjust bus power based on load demand. Testing the system in the absence of photovoltaic power generation reveals its capability to supply energy to the load for three hours with a minimum operating load power of 3 kW even under weather conditions unsuitable for photovoltaic power generation. These findings showed the potential of electro-hydrogen coupling energy storage systems in addressing the challenges associated with renewable energy integration paving the way for a reliable and sustainable energy supply.
Optimizing Regional Energy Networks: A Hierarchical Multi-energy System Approach for Enhanced Efficiency and Privacy
Sep 2025
Publication
This research presents a hierarchically synchronized Multi-Energy System (MES) designed for regional communities incorporating a network of small-scale Integrated Energy Microgrids (IEMs) to augment efficiency and collective advantages. The MES framework innovatively integrates energy complementarity pairing algorithms with efficient iterative optimization processes significantly curtailing operational expenditures for constituent microgrids and bolstering both community-wide benefits and individual microgrid autonomy. The MES encompasses electricity hydrogen and heat resources while leveraging controllable assets such as battery storage systems fuel cell combined heat and power units and electric vehicles. A comparative study of six IEMs demonstrates an operational cost reduction of up to 26.72% and a computation time decrease of approximately 97.13% compared to traditional methods like ADMM and IDAM. Moreover the system preserves data privacy by limiting data exchange to aggregated energy information thus minimizing direct communication between IEMs and the MES. This synergy of multi-energy complementarity iterative optimization and privacy-aware coordination underscores the potential of the proposed approach for scalable community-centered energy systems.
Research on the Optimal Scheduling Strategy of the Integrated Energy System of Electricity to Hydrogen under the Stepped Carbon Trading Mechanism
Sep 2024
Publication
Under the guidance of energy-saving and emission reduction goals a lowcarbon economic operation method for integrated energy systems (IES) has been proposed. This strategy aims to enhance energy utilization efficiency bolster equipment operational flexibility and significantly cut down on carbon emissions from the IES. Firstly a thorough exploration of the two-stage operational framework of Power-to-Gas (P2G) technology is conducted. Electrolyzers methane reactors and hydrogen fuel cells (HFCs) are introduced as replacements for traditional P2G equipment with the objective of harnessing the multiple benefits of hydrogen energy. Secondly a cogeneration and HFC operational strategy with adjustable heat-to-electricity ratio is introduced to further enhance the IES’s low-carbon and economic performance. Finally a step-by-step carbon trading mechanism is introduced to effectively steer the IES towards carbon emission control.
Hydrogen Embrittlement as a Conspicuous Material Challenge - Comprehensive Review and Future Directions
May 2024
Publication
Hydrogen is considered a clean and efficient energy carrier crucial for shapingthe net-zero future. Large-scale production transportation storage and use of greenhydrogen are expected to be undertaken in the coming decades. As the smallest element inthe universe however hydrogen can adsorb on diffuse into and interact with many metallicmaterials degrading their mechanical properties. This multifaceted phenomenon isgenerically categorized as hydrogen embrittlement (HE). HE is one of the most complexmaterial problems that arises as an outcome of the intricate interplay across specific spatialand temporal scales between the mechanical driving force and the material resistancefingerprinted by the microstructures and subsequently weakened by the presence of hydrogen. Based on recent developments in thefield as well as our collective understanding this Review is devoted to treating HE as a whole and providing a constructive andsystematic discussion on hydrogen entry diffusion trapping hydrogen−microstructure interaction mechanisms and consequencesof HE in steels nickel alloys and aluminum alloys used for energy transport and storage. HE in emerging material systems such ashigh entropy alloys and additively manufactured materials is also discussed. Priority has been particularly given to these lessunderstood aspects. Combining perspectives of materials chemistry materials science mechanics and artificial intelligence thisReview aspires to present a comprehensive and impartial viewpoint on the existing knowledge and conclude with our forecasts ofvarious paths forward meant to fuel the exploration of future research regarding hydrogen-induced material challenges.
The Development Trend of and Suggestions for China's Hydrogen Energy Industry
Jul 2021
Publication
Driven by the current round of technological revolution and industrial transformation and based on a consensus among countries around the world the world’s energy landscape is undergoing profound adjustments to promote a transition to clean low-carbon energy in order to cope with global climate change. As a clean and carbon-free secondary energy source hydrogen energy is an important component of the energy strategy in various countries. Fuel cell technology is also of great importance in directing the current global energy technology revolution. China has clarified its sustainable energy goals: to peak its carbon dioxide emissions [1] and achieve carbon neutrality [2]. With thorough development of technology and the industry hydrogen energy will play a significant role in achieving these goals.
Characterization of Hydrogen-in-Oxygen Changes in Alkaline Electrolysis Hydrogen Production System and Analysis of Influencing Factors
Aug 2025
Publication
Industrial alkaline water electrolysis systems face challenges in maintaining hydrogenin-oxygen impurity within safe limits under fluctuating operating conditions. This study aims to characterize the dynamic response of hydrogen-in-oxygen concentration in an industrial 10 kW alkaline water electrolysis test platform (2 Nm3/h hydrogen output at 1.6 MPa and 90 ◦C) and to identify how operating parameters influence hydrogen-inoxygen behavior. We systematically varied the cell current system pressure and electrolyte flow rate while monitoring real-time hydrogen-in-oxygen levels. The results show that hydrogen-in-oxygen exhibits significant inertia and delay: during startup hydrogen-inoxygen remained below the 2% safety threshold and stabilized at 0.9% at full load whereas a step decrease to 60% load caused hydrogen-in-oxygen to rise to 1.6%. Furthermore reducing the pressure from 1.4 to 1.0 MPa lowered the hydrogen-in-oxygen concentration by up to 15% and halving the alkaline flow rate suppressed hydrogen-in-oxygen by over 20% compared to constant conditions. These findings provide new quantitative insights into hydrogen-in-oxygen dynamics and offer a basis for optimizing control strategies to keep gas purity within safe limits in industrial-scale alkaline water electrolysis systems.
A Multi-Optimization Method for Capacity Configuration of Hybrid Electrolyzer in a Stand-Alone Wind-Photovoltaic-Battery System
Mar 2025
Publication
The coupling of renewable energy sources with electrolyzers under standalone conditions significantly enhances the operational efficiency and improves the costeffectiveness of electrolyzers as a technologically viable and sustainable solution for green hydrogen production. To address the configuration optimization challenge in hybrid electrolyzer systems integrating alkaline water electrolysis (AWE) and proton exchange membrane electrolysis (PEME) this study proposes an innovative methodology leveraging the morphological analysis of Pareto frontiers to determine the optimal solutions under multi-objective functions including the hydrogen production cost and efficiency. Then the complementary advantages of AWE and PEME are explored. The proposed methodology demonstrated significant performance improvements compared with the single-objective optimization function. When contrasted with the economic optimization function the hybrid system achieved a 1.00% reduction in hydrogen production costs while enhancing the utilization efficiency by 21.71%. Conversely relative to the efficiency-focused optimization function the proposed method maintained a marginal 5.22% reduction in utilization efficiency while achieving a 6.46% improvement in economic performance. These comparative results empirically validate that the proposed hybrid electrolyzer configuration through the implementation of the novel optimization framework successfully establishes an optimal balance between the economy and efficiency of hydrogen production. Additionally a discussion on the key factors affecting the rated power and mixing ratio of the hybrid electrolyzer in this research topic is provided.
Data-driven Strategy for Contact Angle Prediction in Underground Hydrogen Storage Using Machine Learning
Feb 2025
Publication
In response to the surging global demand for clean energy solutions and sustainability hydrogen is increasingly recognized as a key player in the transition towards a low-carbon future necessitating efficient storage and transportation methods. The utilization of natural geological formations for underground storage solutions is gaining prominence ensuring continuous energy supply and enhancing safety measures. However this approach presents challenges in understanding gas-rock interactions. To bridge the gap this study proposes a data-driven strategy for contact angle prediction using machine learning techniques. The research leverages a comprehensive dataset compiled from diverse literature sources comprising 1045 rows and over 5200 data points. Input features such as pressure injection rate temperature salinity rock type and substrate were incorporated. Various artificial intelligence algorithms including Support Vector Machine (SVM) k-Nearest Neighbors (KNN) Feedforward Deep Neural Network (FNN) and Recurrent Deep Neural Network (RNN) were employed to predict contact angle with the FNN algorithm demonstrating superior performance accuracy compared to others. The strengths of the FNN algorithm lie in its ability to model nonlinear relationships scalability to large datasets robustness to noisy inputs generalization to unseen data parallelizable training processes and architectural flexibility. Results show that the FNN algorithm demonstrates higher accuracy (RMSE = 0.9640) than other algorithms (RMSERNN = 1.7452 RMSESVM = 1.8228 RMSEKNN = 1.0582) indicating its efficacy in predicting the contact angle testing subset within the context of underground hydrogen storage. The findings of this research highlight a low-cost and reliable approach with high accuracy for estimating contact angle of water–hydrogen–rock system. This technique also helps determine the contribution and influence of independent factors aiding in the interpretation of absorption tendencies and the ease of hydrogen gas flow through the porous rock space during underground hydrogen storage.
Comparison of Hydrogen Specification in National Standards in China
Oct 2019
Publication
Hydrogen specifications for different scenarios are various. Based on national standards for China a comparison of hydrogen specification standards is discussed in this paper including specification standards for industrial hydrogen pure hydrogen high pure hydrogen ultrapure hydrogen hydrogen for electronic industry and hydrogen for PEM FCVs. Hydrogen purity for electronic industry is greater than that for industrial hydrogen pure hydrogen and hydrogen for PEM FCVs. Specifications of general contaminants in hydrogen for electronic industry including H2O O2 N2 CO CO2 and total hydrocarbons are stricter than that in hydrogen for PEM FCVs. Hydrogen purity for PEM FCVs is less than that for electronic industry and pure hydrogen. However contaminants in hydrogen for PEM FCVs are strict. Contaminants in hydrogen for PEM FCVs should include not only H2O O2 N2 CO CO2 Ar and total hydrocarbons but also helium total sulfur compounds formaldehyde formic acid ammonia halogenated compounds and particulates.
Study on Hydrogen Embrittlement Behavior of X65 Pipeline Steel in Gaseous Hydrogen Environment
May 2025
Publication
Pipeline steel is highly susceptible to hydrogen embrittlement (HE) in hydrogen environments which compromises its structural integrity and operational safety. Existing studies have primarily focused on the degradation trends of mechanical properties in hydrogen environments but there remains a lack of quantitative failure prediction models. To investigate the failure behavior of X65 pipeline steel under hydrogen environments this paper utilized notched round bar specimens with three different radii and smooth round bar specimens to examine the effects of pre-charging time the coupled influence of stress triaxiality and hydrogen concentration and the coupled influence of strain rate and hydrogen concentration on the HE sensitivity of X65 pipeline steel. Fracture surface morphologies were characterized using scanning electron microscopy (SEM) revealing that hydrogen-enhanced localized plasticity (HELP) dominates failure mechanisms at low hydrogen concentrations while hydrogen-enhanced decohesion (HEDE) becomes dominant at high hydrogen concentrations. The results demonstrate that increasing stress triaxiality or decreasing strain rate significantly intensifies the HE sensitivity of X65 pipeline steel. Based on the experimental findings failure prediction models for X65 pipeline steel were developed under the coupled effects of hydrogen concentration and stress triaxiality as well as hydrogen concentration and strain rate providing theoretical support and mathematical models for the engineering application of X65 pipeline steel in hydrogen environments.
Distributionally Robust Optimal Scheduling for Integrated Energy System Based on Dynamic Hydrogen Blending Strategy
Jul 2025
Publication
To mitigate challenges arising from renewable energy volatility and multi-energy load uncertainty this paper introduces a dynamic hydrogen blending (DHB) strategy for an integrated energy system. The strategy is categorized into Continuous Hydrogen Blending (CHB) and Time-phased Hydrogen Blending (THB) based on the temporal variations in the hydrogen blending ratio. To evaluate the regulatory effect of DHB on uncertainty a datadriven distributionally robust optimization method is employed in the day-ahead stage to manage system uncertainties. Subsequently a hierarchical model predictive control framework is designed for the intraday stage to track the day-ahead robust scheduling outcomes. Experimental results indicate that the optimized CHB ratio exhibits step characteristics closely resembling the THB configuration. In terms of cost-effectiveness CHB reduces the day-ahead scheduling cost by 0.87% compared to traditional fixed hydrogen blending schemes. THB effectively simplifies model complexity while maintaining a scheduling performance comparable to CHB. Regarding tracking performance intraday dynamic hydrogen blending further reduces upper- and lower-layer tracking errors by 4.25% and 2.37% respectively. Furthermore THB demonstrates its advantage in short-term energy regulation effectively reducing tracking errors propagated from the upper layer MPC to the lower layer resulting in a 2.43% reduction in the lower-layer model’s tracking errors.
Is the Promotion Policy for Hydrogen Fuel Cell Vehicles Effective? Evidence from Chinese Cities
Mar 2025
Publication
China has emerged as a global leader in promoting new energy vehicles; however the impact of these efforts on the commercial vehicle sector remains limited. Hydrogen fuel cell vehicles are crucial for improving the environmental performance of commercial vehicles in China. This study evaluates the effectiveness of China’s Hydrogen fuel cell vehicle policies. Firstly an evaluation index system for hydrogen fuel cell vehicle policies is established quantifying the policy through two key metrics: policy comprehensiveness and policy synergy. Subsequently city-level data from 84 municipalities (2018-2022) are analyzed to assess policy impacts on hydrogen fuel cell vehicles adoption. The results show that both policy comprehensiveness and synergy significantly drive hydrogen fuel cell vehicle sales growth. Early sales figures also strongly influence current trends. Therefore promoting growth in hydrogen fuel cell vehicle sales can further enhance policy efforts while also accounting for the cumulative effects of initial promotional activities.
The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections
May 2025
Publication
The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection and it also wasted enormous underground space resources. To address such problems comprehensive utilization of these salt caverns has been proposed both currently and in the future mainly consisting of energy storage and waste disposal. Regarding energy storage in abandoned salt caverns the storage media such as gas oil compressed air and hydrogen have been introduced respectively in terms of the current development and future implementation with siteselection criteria demonstrated in detail. The recommended burial depth of abandoned salt caverns for gas storage is 1000–1500 m while it should be less than 1000 m for oil storage. Salt cavern compressed air storage has more advantages in construction and energy storage economics. Salt cavern hydrogen storage imposes stricter requirements on surrounding rock tightness and its location should be near the hydrogen production facilities. The technical idea of storing ammonia in abandoned salt caverns (indirect hydrogen storage) has been proposed to enhance the energy storage density. For the disposal of wastes including low-level nuclear waste and industrial waste the applicable conditions technical difficulties and research prospects in this field have been reviewed. The disposal of nuclear waste in salt caverns is not currently recommended due to the complex damage mechanism of layered salt rock and the specific locations of salt mines in China. Industrial waste disposal is relatively mature internationally but in China policy and technical research require strengthening to promote its application. Furthermore considering the recovery of salt mines and the development of salt industries the cooperation between energy storage regions and salt mining regions has been discussed. The economic and environmental benefits of utilizing abandoned salt caverns have been demonstrated. This study provides a solution to handle the abandoned salt caverns in China and globally.
The Role of Integrated Multi-Energy Systems Toward Carbon-Neutral Ports: A Data-Driven Approach Using Empirical Data
Feb 2025
Publication
Ports are critical hubs in the global supply chain yet they face mounting challenges in achieving carbon neutrality. Port Integrated Multi-Energy Systems (PIMESs) offer a comprehensive solution by integrating renewable energy sources such as wind photovoltaic (PV) hydrogen and energy storage with traditional energy systems. This study examines the implementation of a real-word PIMES showcasing its effectiveness in reducing energy consumption and emissions. The findings indicate that in 2024 the PIMES enabled a reduction of 1885 tons of CO2 emissions with wind energy contributing 84% and PV 16% to the total decreases. The energy storage system achieved a charge–discharge efficiency of 99.15% while the hydrogen production system demonstrated an efficiency of 63.34% producing 503.87 Nm3/h of hydrogen. Despite these successes challenges remain in optimizing renewable energy integration expanding storage capacity and advancing hydrogen technologies. This paper highlights practical strategies to enhance PIMESs’ performances offering valuable insights for policymakers and port authorities aiming to balance energy efficiency and sustainability and providing a blueprint for carbon-neutral port development worldwide.
A Coordinated Control Strategy for a Coupled Wind Power and Energy Storage System for Hydrogen Production
Apr 2025
Publication
Hydrogen energy as a medium for long-term energy storage needs to ensure the continuous and stable operation of the electrolyzer during the production of green hydrogen using wind energy. In this paper based on the overall model of a wind power hydrogen production system an integrated control strategy aimed at improving the quality of wind power generation smoothing the hydrogen production process and enhancing the stability of the system is proposed. The strategy combines key measures such as the maximum power point tracking control of the wind turbine and the adaptive coordinated control of the electrochemical energy storage system which can not only efficiently utilize the wind resources but also effectively ensure the stability of the bus voltage and the smoothness of the hydrogen production process. The simulation results show that the electrolyzer can operate at full power to produce hydrogen while the energy storage device is charging when wind energy is sufficient; the electrolyzer continuously produces hydrogen according to the wind energy when the wind speed is normal; and the energy storage device will take on the task of maintaining the operation of the electrolyzer when the wind speed is insufficient to ensure the stability and reliability of the system.
Hydrogen Production in Integration with CCUS: A Realistic Strategy towards Net Zero
Jan 2025
Publication
It is believed that hydrogen will play an essential role in energy transition and achieving the net-zero target by 2050. Currently global hydrogen production mostly relies on processing fossil fuels such as coal and natural gas commonly referred to as grey hydrogen production while releasing substantial amounts of carbon dioxide (CO2). Developing economically and technologically viable pathways for hydrogen production while eliminating CO2 emissions becomes paramount. In this critical review we examine the common grey hydrogen production techniques by analyzing their technical characteristics production efficiency and costs. We further analyze the integration of carbon capture utilization and storage (CCUS) technology establishing the zero-carbon strategy transiting from grey to blue hydrogen production with CO2 capture and either utilized or permanently stored. Today grey hydrogen production exhibits technological diversities with various commercial maturities. Most methods rely on the effectiveness of catalysts necessitating a solution to address catalyst fouling and sintering in practice. Although CCUS captures utilizes or stores CO2 during grey hydrogen production its wide application faces multiple challenges regarding the technological complexity cost and environmental benefits. It is urgent to develop technologically mature low-cost and low-energy-consumption CCUS technology implementing extensive large-scale integrated pilot projects.
Innovative Applications of Single-atom Catalysts in MgH2/Mg System to Build High-efficiency Hydrogen Storage
Aug 2025
Publication
MgH2 shows significant potential for a solid-state hydrogen storage medium due to the advantages of high hydrogen capacity excellent reversibility and low cost. However its large-scale application still requires overcoming significant thermodynamic and kinetic hurdles. Catalyst design and optimization enhancements are crucial for the hydrogen storage properties of MgH2 wherein single-atom catalysts characterized by their small size and high proportion of unsaturated coordination sites have recently demonstrated a significant advance and considerable promise in this regard. This review presents recent progress on state-of-the-art single-atom catalysts for enhancing MgH2 hydrogen storage examining both supported and unsupported catalyst types i.e. transition metal @ N-modified carbon materials and transition metal @ transition metal compounds and metallene-derived compounds and single-atom alloys respectively. We systematically discussed the single-atom catalysts in MgH2 hydrogen storage systems focusing on synthesis strategies characterization techniques catalytic mechanisms as well as existing challenges and future perspectives. We aimed to provide a comprehensive and cohesive understanding for researchers in the field and promote the development of single-atom catalysts and their significant optimization of the hydrogen storage performance of MgH2.
Low-carbon Economic Dispatch of Integrated Energy system with Carbon Capture Power Plant and Multiple Utilization of Hydrogen Energy
Jan 2025
Publication
In the context of “dual carbon” in order to promote the consumption of renewable energy and improve energy utilization efficiency a low-carbon economic dispatch model of an integrated energy system containing carbon capture power plants and multiple utilization of hydrogen energy is proposed. First introduce liquid storage tanks to transform traditional carbon capture power plants and at the same time build a multi-functional hydrogen utilization structure including two-stage power-to-gas hydrogen fuel cells hydrogen storage tanks and hydrogen-doped cogeneration to fully exploit hydrogen. It can utilize the potential of collaborative operation with carbon capture power plants; on this basis consider the transferability and substitutability characteristics of electric heating gas load and construct an electric heating gas comprehensive demand response model; secondly consider the mutual recognition relationship between carbon quotas and green certificates Propose a green certificate-carbon trading mechanism; finally establish an integrated energy system with the optimization goal of minimizing the sum of energy purchase cost demand response compensation cost wind curtailment cost carbon storage cost carbon purchase cost carbon trading cost and green certificate trading compensation. Optimize scheduling model. The results show that the proposed model can effectively reduce the total system cost and carbon emissions improve clean energy consumption and energy utilization and has significant economical and low-carbon properties.
No more items...