China, People’s Republic
Research on Coordinated Control of Power Distribution in Hydrogen-Containing Energy Storage Microgrids
Feb 2025
Publication
The integration of renewable energy sources such as wind and solar power at high proportions has become an inevitable trend in the development of power systems under the new power system framework. The construction of a microgrid system incorporating hydrogen energy storage and battery energy storage can leverage the complementary advantages of long-term and short-term hybrid storage achieving power and energy balance across multiple time scales in the power system. To prevent frequent startstop cycles of hydrogen storage devices and lithium battery storage under overcharge and overdischarge conditions a coordinated control strategy for power distribution in a microgrid with hydrogen storage is proposed. First a fuzzy control algorithm is used for power distribution between hydrogen storage and lithium battery storage. Then the hydrogen storage tank’s state of health (SOH) and the lithium battery’s state of charge (SOC) are compared with the goal of selecting a multi-stack fuel cell system operating at its optimal efficiency point where each fuel cell stack outputs 10 kW. This further ensures that the SOC and SOH remain within reasonable ranges. Finally simulations are conducted in MATLAB/Simulink R2018b to verify that the proposed strategy maintains stability in the DC bus and alleviates issues of overcharge and overdischarge ensuring that both the system’s SOC and SOH remain within a reasonable range thereby enhancing equipment lifespan and system stability
Numerical Investigation for Hazardous Gas Cloud Form and Dissipation of Hydrogen-blended Natural Gas in a Confined Space
Jan 2025
Publication
The safety of hydrogen-blended natural gas (HBNG) in a confined space is an issue especially for ventilation processes. In this study leakage and ventilation processes of low-pressure HBNG with different hydrogen-blended ratio (HBR) in a confined space are simulated and validated by experiment based on similarity criteria. For the leakage process the leak direction and HBR do not significantly affect gas accumulation behaviour. The required time for a gas cloud to fill space decreases slightly with HBR rising and they generally show a linear relationship. For the ventilation process the main influences on the leakage process are the total leakage mass and the ventilation conditions. The required time for hazardous gas cloud dissipation increases with total leakage mass and decreases with HBR. For different ventilation conditions the ranking of required time to exhaust leaked gas is low > centre > high > mix. Through the analysis of pressure distribution it is found time difference is produced by different airflow patterns. With the asymmetric layout outside air rushes into the confined space from the high side and then flows out from the low side carrying the leaked HBNG. These findings inform the design of ventilation for HBNG utilization scenarios like restaurant facing the street.
Conceptual Design and Comprehensive Study of a Dual-mode Engine Intgrated with Hydrogen Fuel Cells and Gas Turbines for Wide-body Aircraft
Sep 2025
Publication
This paper proposes a novel dual-fuel dual-mode dual-thermodynamic cycle aviation propulsion system for the first time and conducts theoretical research on it based on a moderately simplified mathematical model. It is specifically designed to significantly reduce carbon emissions for wide-body aircraft. A comprehensive thermodynamic model is developed for this hybrid power system which integrates a high-temperature proton exchange membrane fuel cell with a dual-rotor turbofan engine. The matching characteristics between aircraft and engine performance are analyzed by systematically varying the fuselage length of the dual-fuel aircraft configuration. Results show that the specific fuel consumption of the proposed engine is decreased by 12.6% compared with that of the traditional turbofan engine as the Mach number increases. Conversely as the relative physical rotational speed decreases the thrust of the novel engine is increased by 10%. With a 20 % extension in fuselage length the dual-fuel aircraft operating on 100 % hydrogen fuel can achieve an endurance exceeding 17 h representing a 20 % endurance improvement over conventional aviation kerosene-powered aircraft. In this case the aircraft weight can be reduced by 96.79 tons and CO2 emissions can be decreased by 301.65 tons.
Control Strategy for Hydrogen Production System using HTO-based Hybrid Electrolyzers
Feb 2025
Publication
Renewable energy-based water electrolysis for hydrogen production is an effective pathway to achieve green energy transition. However the intermittency and randomness of renewable energy pose numerous challenges to the safe and stable operation of hydrogen production systems with the wide power fluctuation adaptability and economic efficiency of electrolyzers being prominent issues. Hybrid electrolyzers combine the operational characteristics of proton exchange membrane (PEM) and alkaline electrolyzers leveraging the advantages of both to improve adaptability to wide power fluctuations and economic efficiency thereby enhancing the overall system efficiency. To ensure coordinated operation of hybrid electrolyzers it is essential to consider their startstop characteristics and the impact of hydrogen to oxygen (HTO) concentration on the hydrogen production system. To achieve this we first discuss the operating characteristics of both types of electrolyzers and the in fluence of system parameters on HTO concentration. A control scheme for hybrid electrolyzer systems consid ering HTO content is proposed. By analyzing the electrolyzer efficiency curve the optimal efficiency point under low power operation is identified enabling the electrolyzers to operate at this optimal efficiency thus enhancing the efficiency of the hybrid electrolyzer system. The implementation of a dual-layer rotation control strategy effectively balances the lifecycle loss of the electrolyzers. Additionally reducing the pressure during startup broadens the startup range of the hybrid electrolyzer.
Genetic Algorithm-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles
Aug 2025
Publication
Enhancing system durability and fuel economy stands as a crucial factor in the energy management of fuel cell hybrid vehicles. This paper proposes an Equivalent Consumption Minimization Strategy (ECMS) based on the Genetic Algorithm (GA) aiming to minimize the overall operating cost of the system. First this study establishes a dynamic model of the hydrogen–electric hybrid vehicle a static input–output model of the hybrid power system and an aging model. Next a speed prediction method based on an Autoregressive Integrated Moving Average (ARIMA) model is designed. This method fits a predictive model by collecting historical speed data in real time ensuring the robustness of speed prediction. Finally based on the speed prediction results an adaptive Equivalence Factor (EF) method using a GA is proposed. This method comprehensively considers fuel consumption and the economic costs associated with the aging of the hydrogen–electric hybrid system forming a total operating cost function. The GA is then employed to dynamically search for the optimal EF within the cost function optimizing the system’s economic performance while ensuring real-time feasibility. Simulation outcomes demonstrate that the proposed energy management strategy significantly enhances both the durability and fuel economy of the fuel cell hybrid vehicle.
Consequence Analysis of Liquid Hydrogen Leakage from Storage Tanks at Urban Hydrogen Refueling Stations: A Case Study
Aug 2025
Publication
Hydrogen energy is considered a crucial clean energy carrier for replacing fossil fuels in the future. Liquid hydrogen (LH2) with its economic advantages and high purity is central to the development of future hydrogen refueling stations (HRSs). However leakage poses significant fire and explosion risks challenging its safe industrial use. In this study a numerical model of LH2 leakage at an HRS in Chongqing was established using Computational Fluid Dynamics (CFD) software. The diffusion law of a flammable gas cloud (FGC) was examined under the synergistic effect of the leakage direction rate and wind speed of an LH2 storage tank in an HRS. The phase transition of LH2 presents dual risks of combustion and frostbite owing to the spatial overlap between low-temperature areas and FGCs. The findings revealed that the equivalent stoichiometric gas cloud volume (Q9) reached 685 m3 in the case of crosswind leakage with the superimposed effect of reflected waves from the LH2 transport vehicle resulting in a peak explosion overpressure of 0.61 bar. The low-temperature hazard area and the FGC (with a concentration of 30–75%) show significant spatial overlap. These research outcomes offer crucial theoretical underpinning for enhancing equipment layout optimization and safety protection strategies at HRSs.
Spray Cooling for Enhancing Cooling Performance and Reducing Power Consumption of Radiator in Hydrogen Fuel Cell System
Feb 2025
Publication
During the development of hydrogen fuel cell systems with the augmentation of power conventional air-cooling systems which are frequently employed in portable scenarios encounter difficulties in maintaining the balance between radiator heat dissipation and power consumption. In contrast liquid-cooling systems are widely adopted in high-power applications. In this regard aiming to address the heat dissipation problem and make use of the wastewater from the stack tailpipe a novel spray cooling system integrated with the traditional air-cooling for the radiator of hydrogen fuel cell systems is put forward. Through experimental investigations based on heat transfer theory and the design principles of fuel cell systems it is discovered that under specific nozzle apertures and spray water pressures the heat dissipation rate can be enhanced by 40 % and 30 % respectively. With particular radiator internal water flow rates and fan speeds the heat dissipation rate can be increased by 30 % and 108 % respectively. And the spray angle of 60 ◦ is the best angle. In contrast to the conventional air-cooling system the spray-air cooling system exhibits a heat dissipation rate that is approximately 50 % higher. Exper imental analyses demonstrate that the new system effectively harnesses water resources and enhances the heat dissipation performance of the radiator thereby providing a technical reference for the application of spray cooling in the radiators of hydrogen fuel cell systems.
A Multi-agent Optimal Operation Methodology of Electric, Thermal, and Hydrogen Integrated Energy System based on ADMM Algorithm
Aug 2024
Publication
This article presents a study on the distributed optimization operation method for micro-energy grid clusters within an electric thermal and hydrogen integrated energy system. The research focuses on precisely modeling the Power-toHydrogen (P2H) conversion process in electrolytic cells by considering their startup characteristics. An optimization operation model is established with each micro-energy grid as the principal entity to cater to their individual interests and demands. The Alternating Direction Method of Multipliers (ADMM) algorithm is adopted for distributed solution. Case studies demonstrate that the connection topology between micro-energy grids significantly impacts the total operating cost and the effectiveness of the ADMM algorithm is validated through a comparison with centralized optimization approaches.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Collaborative Control Strategy of Electric–Thermal–Hydrogen-Integrated Energy System Based on Variable-Frequency Division Coefficient
Dec 2024
Publication
To address the issues of diverse energy supply demands and power fluctuations in integrated energy systems (IESs) this study takes an IES composed of power-generation units such as wind and photovoltaic units along with various energy-storage systems including electrical thermal and hydrogen storage as the research subject. A collaborative control strategy is proposed for the IES which comprehensively considers the status of diverse energy-storage systems like battery packs thermal tanks and hydrogen tanks. First a mathematical model of the IES is constructed. Then a dual-layer collaborative control strategy is designed considering different operating modes of the IES which includes a multi-energy-storage power allocation control layer based on second-order power-frequency processing and distribution and an adaptive adjustment layer for adjusting powerfrequency coefficients based on adaptive fuzzy control. Finally MATLAB is used to simulate and validate the proposed strategy. The results indicate that the collaborative control strategy based on variable-frequency coefficients optimizes the allocation of fluctuating power among multiple energy-storage systems enhances the stability of bus voltage reduces the deep charge and discharge time of battery packs and extends the service life of battery packs.
Optimization Operation Strategy for Comprehensive Energy System Considering Multi-Mode Hydrogen Transportation
Dec 2024
Publication
The transformation from a fossil fuel economy to a low-carbon economy has reshaped the way energy is transmitted. As most renewable energy is obtained in the form of electricity using green electricity to produce hydrogen is considered a promising energy carrier. However most studies have not considered the transportation mode of hydrogen. In order to encourage the utilization of renewable energy and hydrogen this paper proposes a comprehensive energy system optimization operation strategy considering multi-mode hydrogen transport. Firstly to address the shortcomings in the optimization operation of existing systems regarding hydrogen transport modeling is conducted for multi-mode hydrogen transportation through hydrogen tube trailers and pipelines. This model reflects the impact of multi-mode hydrogen delivery channels on hydrogen utilization which helps promote the consumption of new energy in electrolysis cells to meet application demands. Based on this the constraints of electrolyzers combined heat and power units hydrogen fuel cells and energy storage systems in integrated energy systems (IESs) are further considered. With the objective of minimizing the daily operational cost of the comprehensive energy system an optimization model for the operation considering multi-mode hydrogen transport is constructed. Lastly based on simulation examples the impact of multi-mode hydrogen transportation on the operational cost of the system is analyzed in detail. The results indicate that the proposed optimization strategy can reduce the operational cost of the comprehensive energy system. Hydrogen tube trailers and pipelines will have a significant impact on operational costs. Properly allocating the quantity of hydrogen tube trailers and pipelines is beneficial for reducing the operational costs of the system. Reasonable arrangement of hydrogen transportation channels is conducive to further promoting the green and economic operation of the system.
Pressure Dependence of CO2 Effect on Hydrogen-assisted Fatigue Crack Growth in Two Pipeline Steels
Oct 2024
Publication
This study investigated the pressure-dependent CO2 effect on the hydrogen embrittlement of X80 and GB20# pipeline steels by combining experiments and first-principles calculations. Results revealed that the CO2 effect enhanced the fatigue crack growth for GB20# steel in 10 MPa CO₂-enriched hydrogen mixtures. However the improved degree by the CO₂ effect at 10 MPa was less pronounced than at 0.4 MPa which was found for the first time. This was attributed to the decreased adsorption rate of CO₂ on iron as hydrogen pressure increased. Therefore in high-pressure CO₂-enriched hydrogen mixtures CO2 could not significantly accelerate the inherent rapid hydrogen uptake at high pressure.
Research on Energy Management of Hydrogen Fuel Cell Bus Based on Deep Reinforcement Learning Considering Velocity Control
Aug 2023
Publication
In the vehicle-to-everything scenario the fuel cell bus can accurately obtain the surrounding traffic information and quickly optimize the energy management problem while controlling its own safe and efficient driving. This paper proposes an energy management strategy (EMS) that considers speed control based on deep reinforcement learning (DRL) in complex traffic scenarios. Using SUMO simulation software (Version 1.15.0) a two-lane urban expressway is designed as a traffic scenario and a hydrogen fuel cell bus speed control and energy management system is designed through the soft actor–critic (SAC) algorithm to effectively reduce the equivalent hydrogen consumption and fuel cell output power fluctuation while ensuring the safe efficient and smooth driving of the vehicle. Compared with the SUMO–IDM car-following model the average speed of vehicles is kept the same and the average acceleration and acceleration change value decrease by 10.22% and 11.57% respectively. Compared with deep deterministic policy gradient (DDPG) the average speed is increased by 1.18% and the average acceleration and acceleration change value are decreased by 4.82% and 5.31% respectively. In terms of energy management the hydrogen consumption of SAC–OPT-based energy management strategy reaches 95.52% of that of the DP algorithm and the fluctuation range is reduced by 32.65%. Compared with SAC strategy the fluctuation amplitude is reduced by 15.29% which effectively improves the durability of fuel cells.
A Review of Hydrogen Production via Seawater Electrolysis: Current Status and Challenges
Oct 2024
Publication
Seawater electrolysis represents a promising green energy technology with significant potential for efficient energy conversion. This study provides an in-depth examination of the key scientific challenges inherent in the seawater-electrolysis process and their potential solutions. Initially it analyzes the potential issues of precipitation and aggregation at the cathode during hydrogen evolution proposing strategies such as self-cleaning cathodes and precipitate removal to ensure cathode stability in seawater electrolysis. Subsequently it addresses the corrosion challenges faced by anode catalysts in seawater introducing several anti-corrosion strategies to enhance anode stability including substrate treatments such as sulfidation phosphidation selenidation and LDH (layered double hydroxide) anion intercalation. Additionally this study explores the role of regulating the electrode surface microenvironment and forming unique coordination environments for active atoms to enhance seawater electrolysis performance. Regulating the surface microenvironment provides a novel approach to mitigating seawater corrosion. Contrary to the traditional understanding that chloride ions accelerate anode corrosion certain catalysts benefit from the unique coordination environment of chloride ions on the catalyst surface potentially enhancing oxygen evolution reaction (OER) performance. Lastly this study presents the latest advancements in the industrialization of seawater electrolysis including the in situ electrolysis of undiluted seawater and the implementation of three-chamber dual anion membranes coupled with circulating electrolyte systems. The prospects of seawater electrolysis are also explored.
Design and Performance Optimization of a Radial Turbine Using Hydrogen Combustion Products
Dec 2024
Publication
The combustion of hydrogen increases the water content of the combustion products affecting the aerodynamic performance of turbines using hydrogen as a fuel. This study aims to design a radial turbine using the differential evolution (DE) algorithm to improve its characteristics and optimize its aerodynamic performance through an orthogonal experiment and analysis of means (ANOM). The effects of varying water content in combustion products ranging from 12% to 22% on the performance of the radial turbine are also investigated. After optimization the total–static efficiency of the radial turbine increased to 89.12% which was 1.59% higher than the preliminary design. The study found that flow loss in the impeller primarily occurred at the leading edge trailing edge and the inlet of the suction surface tip and outlet. With a 10% increase in water content the enthalpy dropped Mach number increased and turbine power increased by 4.64% 1.71% and 2.41% respectively. However the total static efficiency and mass flow rate decreased by 0.71% and 2.13% respectively. These findings indicate that higher water content in hydrogen combustion products enhances the turbine’s output power while reducing the combustion products’ mass flow rate.
Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization
May 2024
Publication
Green hydrogen generated via water electrolysis has become an essential energy carrier for achieving carbon neutrality globally because of its versatility in renewable energy consumption and decarbonization applications in hard-to-abate sectors; however there is a lack of systematic analyses of its abatement potential and economics as an alternative to traditional technological decarbonization pathways. Based on bibliometric analysis and systematic evaluation methods this study characterizes and analyzes the literature on the Web of Science from 1996 to 2023 identifying research hotspots methodological models and research trends in green hydrogen for mitigating climate change across total value chain systems. Our review shows that this research theme has entered a rapid development phase since 2016 with developed countries possessing more scientific results and closer partnerships. Difficult-to-abate sectoral applications and cleaner production are the most famous value chain links and research hotspots focus on three major influencing factors: the environment; techno-economics; and energy. Green hydrogen applications which include carbon avoidance and embedding to realize carbon recycling have considerable carbon reduction potential; however uncertainty limits the influence of carbon reduction cost assessment indicators based on financial analysis methods for policy guidance. The abatement costs in the decarbonization sector vary widely across value chains electricity sources baseline scenarios technology mixes and time scenarios. This review shows that thematic research trends are focused on improving and optimizing solutions to uncertainties as well as studying multisectoral synergies and the application of abatement assessment metrics.
Examining the Nature of Two-dimensional Transverse Waves in Marginal Hydrogen Detonations using Boundary Layer Loss Modeling with Detailed Chemistry
Sep 2023
Publication
Historically it has been a challenge to simulate the experimentally observed cellular structures and marginal behavior of multidimensional hydrogen-oxygen detonations in the presence of losses even with detailed chemistry models. Very recently a quasi-two-dimensional inviscid approach was pursued where losses due to viscous boundary layers were modeled by the inclusion of an equivalent mass divergence in the lateral direction using Fay’s source term formulation with Mirels’ compressible boundary layer solutions. The same approach was used for this study along with the inclusion of thermally perfect detailed chemistry in order to capture the correct ignition sensitivity of the gas to dynamic changes in the thermodynamic state behind the detonation front. In addition the strength of transverse waves and their impact on the detonation front was investigated. Here the detailed San Diego mechanism was applied and it has been found that the detonation cell sizes can be accurately predicted without the need to prescribe specific parameters for the combustion model. For marginal cases where the detonation waves approach their failure limit quasi-stable mode behavior was observed where the number of transverse waves monotonically decreased to a single strong wave over a long enough distance. The strong transverse waves were also found to be slightly weaker than the detonation front indicating that they are not overdriven in agreement with recent studies.
Considering Carbon–Hydrogen Coupled Integrated Energy Systems: A Pathway to Sustainable Energy Transition in China Under Uncertainty
Oct 2024
Publication
The low-carbon construction of integrated energy systems is a crucial path to achieving dual carbon goals with the power-generation side having the greatest potential for emissions reduction and the most direct means of reduction which is a current research focus. However existing studies lack the precise modeling of carbon capture devices and the cascaded utilization of hydrogen energy. Therefore this paper establishes a carbon capture power plant model based on a comprehensive flexible operational mode and a coupled model of a two-stage P2G (Power-to-Gas) device exploring the “energy time-shift” characteristics of the coupled system. IGDT (Information Gap Decision Theory) is used to discuss the impact of uncertainties on the power generation side system. The results show that by promoting the consumption of clean energy and utilizing the high energy efficiency of hydrogen while reducing reliance on fossil fuels the proposed system not only meets current energy demands but also achieves a more efficient emission reduction laying a solid foundation for a sustainable future. By considering the impact of uncertainties the system ensures resilience and adaptability under fluctuating renewable energy supply conditions making a significant contribution to the field of sustainable energy transition.
Recent Advances in Combustion Science Related to Hydrogen Safety
Dec 2024
Publication
Hydrogen is a key pillar in the global Net Zero strategy. Rapid scaling up of hydrogen production transport distribution and utilization is expected. This entails that hydrogen which is traditionally an industrial gas will come into proximity of populated urban areas and in some situations handled by the untrained public. To realize all their benefits hydrogen and its technologies must be safely developed and deployed. The specific properties of hydrogen involving wide flammability range low ignition energy and fast flame speed implies that any accidental release of hydrogen can be easily ignited. Comparing with conventional fuels combustion systems fueled by hydrogen are also more prone to flame instability and abnormal combustion. This paper aims to provide a comprehensive review about combustion research related to hydrogen safety. It starts with a brief introduction which includes some overview about risk analysis codes and standards. The core content covers ignition fire explosions and deflagration to detonation transition (DDT). Considering that DDT leads to detonation and that detonation may also be induced directly under special circumstances the subject of detonation is also included for completeness. The review covers laboratory medium and large-scale experiments as well as theoretical analysis and numerical simulation results. While highlights are provided at the end of each section the paper closes with some concluding remarks highlighting the achievements and key knowledge gaps.
Performance Assessment and Optimization of the Ultra-High Speed Air Compressor in Hydrogen Fuel Cell Vehicles
Feb 2024
Publication
Air compressors in hydrogen fuel cell vehicles play a crucial role in ensuring the stability of the cathode air system. However they currently face challenges related to low efficiency and poor stability. To address these issues the experimental setup for the pneumatic performance of air compressors is established. The effects of operational parameters on energy consumption efficiency and mass flow rate of the air compressor are revealed based on a Morris global sensitivity analysis. Considering a higher flow rate larger efficiency and lower energy consumption simultaneously the optimal operating combination of the air compressor is determined based on grey relational multi-objective optimization. The optimal combination of operational parameters consisted of a speed of 80000 rpm a pressure ratio of 1.8 and an inlet temperature of 18.3 °C. Compared to the average values the isentropic efficiency achieved a 48.23% increase and the mass flow rate rose by 78.88% under the optimal operational combination. These findings hold significant value in guiding the efficient and stable operation of air compressors. The comprehensive methodology employed in this study is applicable further to investigate air compressors for hydrogen fuel cell vehicles.
No more items...