China, People’s Republic
MOF-Derived Electrocatalysts for High-Efficiency Hydrogen Production via Water Electrolysis
Jun 2025
Publication
Water electrolysis for hydrogen production has garnered significant attention in the context of increasing global energy demands and the “dual-carbon” strategy. However practical implementation is hindered by challenges such as high overpotentials high catalysts costs and insufficient catalytic activity. In this study three mono and bimetallic metal−organic framework (MOFs)-derived electrocatalysts Fe-MOFs Fe/Co-MOFs and Fe/Mn-MOFs were synthesized via a one-step hydrothermal method using nitroterephthalic acid (NO2-BDC) as the ligand and NN-dimethylacetamide (DMA) as the solvent. Electrochemical tests demonstrated that the Fe/Mn-MOFs catalyst exhibited superior performance achieving an overpotential of 232.8 mV and a Tafel slope of 59.6 mV·dec−1 alongside the largest electrochemical active surface area (ECSA). In contrast Fe/Co-MOFs displayed moderate catalytic activity while Fe-MOFs exhibited the lowest efficiency. Stability tests revealed that Fe/Mn-MOFs retained 92.3% of its initial current density after 50 h of continuous operation highlighting its excellent durability for the oxygen evolution reaction (OER). These findings emphasize the enhanced catalytic performance of bimetallic MOFs compared to monometallic counterparts and provide valuable insights for the development of high-efficiency MOF-based electrocatalysts for sustainable hydrogen production.
Dissociative Adsorption of Hydrogen in Hydrogen-Blended Natural Gas Pipelines: A First Principles and Thermodynamic Analysis
Jun 2025
Publication
This study employs first principles calculations and thermodynamic analyses to investigate the dissociative adsorption of hydrogen on the Fe(110) surface. The results show that the adsorption energies of hydrogen at different sites on the iron surface are −1.98 eV (top site) −2.63 eV (bridge site) and −2.98 eV (hollow site) with the hollow site being the most stable adsorption position. Thermodynamic analysis further reveals that under operational conditions of 25 ◦C and 12 MPa the Gibbs free energy change (∆G) for hydrogen dissociation is −1.53 eV indicating that the process is spontaneous under pipeline conditions. Moreover as temperature and pressure increase the spontaneity of the adsorption process improves thus enhancing hydrogen transport efficiency in pipelines. These findings provide a theoretical basis for optimizing hydrogen transport technology in natural gas pipelines and offer scientific support for mitigating hydrogen embrittlement improving pipeline material performance and developing future hydrogen transportation strategies and safety measures.
Above-ground Hydrogen Storage: A State-of-the-art Review
Oct 2024
Publication
Hydrogen is increasingly recognized as a clean energy alternative offering effective storage solutions for widespread adoption. Advancements in storage electrolysis and fuel cell technologies position hydrogen as a pathway toward cleaner more efficient and resilient energy solutions across various sectors. However challenges like infrastructure development cost-effectiveness and system integration must be addressed. This review comprehensively examines above-ground hydrogen storage technologies and their applications. It highlights the importance of established hydrogen fuel cell infrastructure particularly in gaseous and LH2 systems. The review favors material-based storage for medium- and long-term needs addressing challenges like adverse thermodynamics and kinetics for metal hydrides. It explores hydrogen storage applications in mobile and stationary sectors including fuel-cell electric vehicles aviation maritime power generation systems off-grid stations power backups and combined renewable energy systems. The paper underscores hydrogen’s potential to revolutionize stationary applications and co-generation systems highlighting its significant role in future energy landscapes.
Numerical Simulation Study of Gas Stratification in Hydrogen-Enriched Natural Gas Pipelines
Jun 2025
Publication
Hydrogen blending in natural gas pipelines facilitates renewable energy integration and cost-effective hydrogen transport. Due to hydrogen’s lower density and higher leakage potential compared to natural gas understanding hydrogen concentration distribution is critical. This study employs ANSYS Fluent 2022 R1 with a realizable k-ε model to analyze flow dynamics of hydrogen–methane mixtures in horizontal and undulating pipelines. The effects of hydrogen blending ratios pressure (3–8 MPa) and pipeline geometry were systematically investigated. Results indicate that in horizontal pipelines hydrogen concentrations stabilize near initial values across pressure variations with minimal deviation (maximum increase: 1.6%). In undulating pipelines increased span length of elevated sections reduces maximum hydrogen concentration while maintaining proximity (maximum increase: 0.65%) to initial levels under constant pressure. Monitoring points exhibit concentration fluctuations with changing pipeline parameters though no persistent stratification occurs. However increasing the undulating height elevation difference leads to an increase in the maximum hydrogen concentration at the top of the pipeline rising from 3.74% to 9.98%. The findings provide theoretical insights for safety assessments of hydrogen–natural gas co-transport and practical guidance for pipeline design optimization.
Multi-time Scaling Optimization for Electric Station Considering Uncertainties of Renewable Energy and EVs
Oct 2025
Publication
The development of new energy vehicles particularly electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) represents a strategic initiative to address climate change and foster sustainable development. Integrating PV with hydrogen production into hybrid electricity-hydrogen energy stations enhances land and energy efficiency but introduces scheduling challenges due to uncertainties. A multi-time scale scheduling framework which includes day-ahead and intraday optimization is established using fuzzy chance-constrained programming to minimize costs while considering the uncertainties of PV generation and charging/refueling demand. Correspondingly trapezoidal membership function and triangular membership function are used for the fuzzy quantification of day-ahead and intraday predictions of photovoltaic power generation and load demands. The system achieves 29.37% lower carbon emissions and 17.73% reduced annualized costs compared to day-ahead-only scheduling. This is enabled by real-time tracking of PV/load fluctuations and optimized electrolyzer/fuel cell operations maximizing renewable energy utilization. The proposed multi-time scale framework dynamically addresses short-term fluctuations in PV generation and load demand induced by weather variability and temporal dynamics. By characterizing PV/load uncertainties through fuzzy methods it enables formulation of chance-constrained programming models for operational risk quantification. The confidence level – reflecting decision-makers’ reliability expectations – progressively increases with refined temporal resolution balancing economic efficiency and operational reliability.
Optimizing Storage Parameters for Underground Hydrogen Storage in Aquifers: Cushion Gas Selection, Well Pattern Design, and Purity Control
Oct 2025
Publication
Underground hydrogen storage in aquifers is a promising solution to address the imbalance between energy supply and demand yet its practical implementation requires optimized strategies to ensure high efficiency and economic viability. To improve the storage and production efficiency of hydrogen it is essential to select the appropriate cushion gas and to study the influence of reservoir and process parameters. Based on the conceptual model of aquifer with single-well injection and production three potential cushion gas (carbon dioxide nitrogen and methane) were studied and the changes in hydrogen recovery for each cushion gas were compared. The effects of temperature initial pressure porosity horizontal permeability vertical to horizontal permeability ratio permeability gradient hydrogen injection rate and hydrogen production rate on the purity of recovered hydrogen were investigated. Additionally the impact of different well pattern on the purity of recovered hydrogen was studied. The results indicate that methane is the most effective cushion gas for improving hydrogen recovery in UHS. Different well patterns have significant impacts on the purity of recovered hydrogen. The mole fractions of methane in the produced gas for the single-well line-drive pattern and five-spot pattern were 16.8% 5% and 3.05% respectively. Considering the economic constraints the five-spot well pattern is most suitable for hydrogen storage in aquifers. Reverse rhythm reservoirs with smaller permeability differences should be chosen to achieve relatively high hydrogen recovery and purity of recovered hydrogen. An increase in hydrogen production rate leads to a significant decrease in the purity of the recovered hydrogen. In contrast hydrogen injection rate has only a minor effect. These findings provide actionable guidance for the selection of cushion gas site selection and operational design of aquifer-based hydrogen storage systems contributing to the large-scale seasonal storage of hydrogen and the balance of energy supply and demand.
Numerical Simulation Study on Hydrogen Leakage and Explosion of Hydrogen Fuel Cell Buses
Aug 2025
Publication
This study explores the safety problems of hydrogen leakage and explosion in hydrogen fuel cell buses through Computational Fluid Dynamics simulations. The research investigates the diffusion behavior of hydrogen in the passenger cabin depending on the leakage position and flow rates identifying a stratified constant-concentration layer formed at the top of the cabin. Leakage near the rear wall of the vehicle provided the highest hydrogen concentration while at higher flow rates the diffusive process accelerated the spreading of flammable hydrogen concentrations. Hydrogen ignition simulations showed a fast internal pressure increase and secondary explosions outside the vehicle. Thermal hazards in the cases were higher than overpressure. The research’s additional analysis of ignition timing and source location shows that overpressure peaked initially with delayed ignition but declined afterward while rear-ignited flames exhibited the farthest high-temperature hazard range at 10.88 m. These findings are fundamental for giving insight into hydrogen behavior in confined spaces and thus guiding risk assessment and emergency response planning for the development of safety protocols in hydrogen fuel cell buses contributing to the safer implementation of hydrogen energy in public transportation.
Fractal Fuzzy‑Based Multi‑criteria Assessment of Sustainability in Rare Earth Use for Hydrogen Storage
Aug 2025
Publication
The use of rare earth elements in hydrogen storage processes offers significant advantages in terms of increasing technological efficiency and ensuring system security. However this process also creates some serious problems in terms of environmental and economic sustainability. It is necessary to determine the most critical indicators affecting the sustainable use of these elements. Studies on this subject in the literature are quite limited and this may lead to wrong investment decisions. The main purpose of this study is to determine the most important indicators to increase the sustainable use of rare earth elements in hydrogen storage processes. An original decision-making model in which Siamese network logarithmic percentage-change driven objective weighting (LOPCOW) fractal fuzzy numbers and weighted influence super matrix with precedence (WISP) approaches are integrated in the study. This study provides an original contribution to the literature by identifying the most critical indicators affecting the sustainable use of rare earths in hydrogen storage processes by presenting an innovative model. Fractal structures such as Koch Snowflake Cantor Dust and Sierpinski Triangle can model complex uncertainties more successfully. Fractal structures are particularly effective in modeling linguistic fuzziness because their recursive nature closely mirrors the layered and imprecise way humans often express subjective judgments. Unlike linear fuzzy sets fractals can capture the patterns of ambiguity found in expert evaluations. Hydrogen storage capacity and government supports are determined as the most vital criteria affecting sustainability in rare earth use.
Hydrogen Production from Pyrolysis of Biomass Components
Sep 2025
Publication
Hydrogen energy is key for the global green energy transition and biomass thermochemical has become an important option for green hydrogen production due to its carbon neutrality advantage. Pyrolysis is the initial step of thermochemical technologies. A systematic analysis of the mechanism of H2 production from biomass pyrolysis is significant for the subsequent optimal design of efficient biomass thermochemical H2 production technologies. Biomass is mainly composed of cellulose hemicellulose and lignin and differences in their physicochemical properties and structures directly affect the pyrolysis hydrogen production process. In this study thermogravimetry-mass spectrometry-Fourier transform infrared spectroscopy (TG-MS-FTIR) was employed and fixed-bed pyrolysis experiments were conducted to systematically investigate the pyrolysis of biomass component with focusing on hydrogen production. According to the results of TG-MS-FTIR experiments hemicellulose produced hydrogen through the breaking of C-H bonds in short chains and acetyl groups as well as secondary cracking of volatiles and condensation of aromatic rings at high temperatures. Cellulose produced hydrogen through the breaking of C-H bonds in volatiles generated from sugar ring cleavage along with char gasification and condensation of aromatic rings at high temperatures. Lignin produced hydrogen through ether bond cleavage breaking of methoxy groups as well as cleavage of phenylpropane side chains and condensation of aromatic rings at high temperatures. Results from fixed-bed pyrolysis experiments further showed that hemicellulose exhibited the strongest hydrogen production capacity with the maximum H2 production efficiency of 6.09 mmol/g the maximum H2 selectivity of 17.79% and the maximum H2 effectiveness of 59% at 800°C.
Effect of Hydrogen Injection Strategy on Combustion and Emissions of Ammonia-Hydrogen Sustainable Engines
Oct 2025
Publication
Driven by the global energy transition and the dual carbon goals developing low-carbon and zero-carbon alternative fuels has become a core issue for sustainable development in the internal combustion engine sector. Ammonia is a promising zero-carbon fuel with broad application prospects. However its inherent combustion characteristics including slow flame propagation high ignition energy and narrow flammable range limit its use in internal combustion engines necessitating the addition of auxiliary fuels. To address this issue this paper proposes a composite injection technology combining “ammonia duct injection + hydrogen cylinder direct injection.” This technology utilizes highly reactive hydrogen to promote ammonia combustion compensating for ammonia’s shortcomings and enabling efficient and smooth engine operation. This study based on bench testing investigated the effects of hydrogen direct injection timing (180 170 160 150 140◦ 130 120 ◦CA BTDC) hydrogen direct injection pressure (4 5 6 7 8 MPa) on the combustion and emissions of the ammonia–hydrogen engine. Under hydrogen direct injection timing and hydrogen direct injection pressure conditions the hydrogen mixture ratios are 10% 20% 30% 40% and 50% respectively. Test results indicate that hydrogen injection timing that is too early or too late prevents the formation of an optimal hydrogen layered state within the cylinder leading to prolonged flame development period and CA10-90. The peak HRR also exhibits a trend of first increasing and then decreasing as the hydrogen direct injection timing is delayed. Increasing the hydrogen direct injection pressure to 8 MPa enhances the initial kinetic energy of the hydrogen jet intensifies the gas flow within the cylinder and shortens the CA0-10 and CA10-90 respectively. Under five different hydrogen direct injection ratios the CA10- 90 is shortened by 9.71% 11.44% 13.29% 9.09% and 13.42% respectively improving the combustion stability of the ammonia–hydrogen engine.
Analysis of Hydrogen Leakage and Influencing Factors of Fuel Cell Vehicles in Enclosed Spaces
Jun 2025
Publication
A simulation study was conducted on the hydrogen leakage diffusion process and influencing factors of fuel cell vehicles in enclosed spaces. The results indicate that when hydrogen leakage flows towards the rear of the vehicle it mainly flows along the rear wall of the space and diffuses to the surrounding areas. Setting ventilation openings of different areas on the top of the carriage did not significantly improve the spatial diffusion speed of the leaked hydrogen and the impact on the concentration of leaked hydrogen was limited to the vicinity of the ventilation openings. The ventilation opening at the rear can accelerate the diffusion of hydrogen gas to the external environment significantly reducing the concentration of hydrogen and rate of gas rise. When the leaked hydrogen gas flows towards the front of the vehicle and above the space the concentration of hydrogen mainly increases along the height direction of the space. The research results have significant safety implications for the use of fuel cell semi-trailer trucks.
Green Hydrogen Production and Deployment: Opportunities and Challenges
Aug 2025
Publication
Green hydrogen is emerging as a pivotal energy carrier in the global transition toward decarbonization offering a sustainable alternative to fossil fuels in sectors such as heavy industry transportation power generation and long-duration energy storage. Despite its potential large-scale deployment remains hindered by significant economic technological and infrastructure challenges. Current production costs for green hydrogen range from USD 3.8 to 11.9/kg H2 significantly higher than gray hydrogen at USD 1.5–6.4/kg H2 due to high electricity prices and electrolyzer capital costs exceeding USD 2000 per kW. This review critically examines the key bottlenecks in green hydrogen production focusing on water electrolysis technologies electrocatalyst limitations and integration with renewable energy sources. The economic viability of green hydrogen is constrained by high electricity consumption capital-intensive electrolyzer costs and operational inefficiencies making it uncompetitive with fossil fuel-based hydrogen. Infrastructure and supply chain challenges including limited hydrogen storage transport complexities and critical material dependencies further restrict market scalability. Additionally policy and regulatory gaps disparities in financial incentives and the absence of a standardized certification framework hinder international trade and investment in green hydrogen projects. This review also highlights market trends and global initiatives assessing the role of government incentives and cross-border collaborations in accelerating hydrogen adoption. While technological advancements and cost reductions are progressing overcoming these challenges requires sustained innovation stronger policy interventions and coordinated efforts to develop a resilient scalable and cost-competitive green hydrogen sector.
Investigation of Erosion Behavior and Life Prediction of Stainless Steel Tube Under Hydrogen Gas with High Velocity
Sep 2025
Publication
The erosion behavior and the service life of a hydrogen transmission tube with high velocity suitable for a hydrogen fuel aviation engine are not clear which is the bottleneck for its application. In this study a coupled model considering the fluid flow field of hydrogen and discrete motion of particles was established. The effects of the geometry parameters and erosion parameters on the hydrogen erosion behavior were investigated. The maximum erosion rate increased exponentially with the increased hydrogen velocity and increased linearly with the increased erosion time. The large bend radius and inner diameter of the bend tube contributed to the decreased erosion rate. There was an optimized window of the bend angle for a small erosion rate. The relationship between the accumulated thickness loss and maximum erosion rate was established. The prediction model of the service life was established using fourth strength theory. The service life of the tube was sensitive to the hydrogen velocity and erosion time. The experiments were conducted and the variations in thickness and hardness were measured. The simulated models agreed with the experiments and could provide guidance for the parameter selection and prediction of the service life of a bend tube.
Market Potential of Hydrogen Fuel Cell Vehicles in Beijing: A Spatial Agent-based Model Approach
Oct 2025
Publication
Hydrogen fuel cell vehicles (HFCVs) are vital for advancing the hydrogen economy and decarbonizing the transportation sector. However research on HFCV market dynamics in passenger vehicles is limited especially incorporating both market competition from other vehicle types and the comprehensive supply–demand market dynamics. To bridge this gap our study proposed a spatial agent-based model to simulate the HFCV market evolution with the aim of finding effective strategies and policy implications for breaking the diffusion dilemma of the HFCV market. We calibrated the model using survey data (N=1065) collected from Beijing and evaluated its performance across five “What-If” scenarios. Results indicate that HFCVs and hydrogen stations are difficult to penetrate under the current conditions despite HFCV applicants and market share growing by 37.5% and 15.63% respectively. Consumer perceptions on cost social and environment have greater impacts on HFCV proliferation than facility availability. The HFCV purchase subsidy has much greater impact than the technological learning rate greatly accelerating its market emergence timing. Finally HFCVs’ diffusion significantly influences the market of battery electric vehicles.
Estimating Thermal Radiation of Vertical Jet Fires of Hydrogen Pipeline Based on Linear Integral and Machine Learning
Oct 2025
Publication
Accurate and efficient prediction of thermal radiant of hydrogen jet fire is important to schedule safety design and emergency rescue program for hydrogen pipelines. In response this paper proposes a novel Optuna-improved back propagation neural network (Optuna-BPNN) to estimate hydrogen jet flame radiation. A linear integral approach incorporating leakage rate and jet flame length is theoretically derived to establish dataset for machine learning. Then the Optuna tool is employed to optimize the initial weights and thresholds of the BP neural network. Input matrix of the Optuna-BPNN model includes pipeline diameter leakage aperture size and hydrogen pressure. 8 sets of experimental data are employed to verify its correctness. When the abnormal data is excluded the predicted thermal radiation of hydrogen jet fire agrees quite well with experimental results with average and maximum deviations being 12.4% and 24.4% respectively. Using the linear integral approach 32670 thermal radiation data points are generated to train and test the Optuna-BPNN model. The maximum deviation between predicted and theoretical radiant heat flux for training and testing sets are only 4.5% and 6.2% respectively. Parallel comparison trials using 6 different machine learning algorithms show that the Optuna-BPNN model gives the best mean absolute error root mean square error and determination coefficient which proves the effectiveness and feasibility of the developed OptunaBPNN model in predicting thermal radiation of hydrogen pipeline jet fires.
Multi-objective Optimal Scheduling of Islands Considering Offshore Hydrogen Production
Jul 2025
Publication
Ocean islands possess abundant renewable energy resources providing favorable conditions for developing offshore clean energy microgrids. However geographical isolation poses significant challenges for direct energy transfer between islands. Recent electrolysis and hydrogen storage technology advancements have created new opportunities for distributed energy utilization in these remote areas. This paper presents a low-carbon economic dispatch strategy designed explicitly for distant oceanic islands incorporating energy self-sufficiency rates and seasonal hydrogen storage (SHS). We propose a power supply model for offshore islands considering hydrogen production from offshore wind power. The proposed model minimizes operational and carbon emission costs while maximizing energy self-sufficiency. It considers the operational constraints of the island’s energy system the offshore transportation network the hydrogen storage infrastructure and the electricityhydrogen-transportation coupling of hydrogen storage (HS) and seasonal hydrogen storage (SHS) services. To optimize the dispatch process this study employs an improved Grey Wolf Optimizer (IGWO) combined with the Differential Evolution method to enhance population diversity and refine the position updating mechanism. Simulation results demonstrate that integrating HS and SHS effectively enhances energy self-sufficiency and reduces carbon emissions. For instance hydrogenation costs decreased by 21.4% after optimization and the peak-valley difference was reduced by 16%. These findings validate the feasibility and effectiveness of the proposed approach.
Hydrogen Leakage Localization Technology in Hydrogen Refueling Stations Combining RL and Hidden Markov Models
Jul 2025
Publication
With the global energy structure shifting towards clean and efficient hydrogen energy the safety management issues of hydrogen refueling stations are becoming increasingly prominent. To address these issues a hydrogen leak localization algorithm for hydrogen refueling stations based on a combination of reinforcement learning and hidden Markov models is proposed. This method combines hidden Markov model to construct a probability distribution model for hydrogen leakage and diffusion simulates the propagation probability of hydrogen in different grid cells and uses reinforcement learning to achieve fast and accurate localization of hydrogen leakage events. The outcomes denoted that the training accuracy reached 95.2% with an F1 value of 0.961 indicating its high accuracy in hydrogen leak localization. When the wind speed was 0.8 m/s the mean square error of the raised method was 0.03 and when the wind speed was 1.0 m/s the mean square error of the raised method was 0.04 proving its good robustness. After 50 localization experiments the proposed algorithm achieves a localization success rate of 93.7% and an average computation time of 42.8 s further demonstrating its high accuracy and computational efficiency. The proposed hydrogen leakage location algorithm has improved the accuracy and efficiency of hydrogen leakage location providing scientific basis and technical guarantee for the safe operation of future hydrogen refueling stations.
Safety Analysis of Hydrogen-Powered Train in Different Application Scenarios: A Review
Mar 2025
Publication
Currently there are many gaps in the research on the safety of hydrogen-powered trains and the hazardous points vary across different scenarios. It is necessary to conduct safety analysis for various scenarios in order to develop effective accident response strategies. Considering the implementation of hydrogen power in the rail transport sector this paper reviews the development status of hydrogen-powered trains and the hydrogen leak hazard chain. Based on the literature and industry data a thorough analysis is conducted on the challenges faced by hydrogen-powered trains in the scenario of electrified railways tunnels train stations hydrogen refueling stations and garages. Existing railway facilities are not ready to deal with accidental hydrogen leakage and the promotion of hydrogen-powered trains needs to be cautious.
Hydrogen Storage Potential in Underground Coal Gasification Cavities: A MD Simulation of Hydrogen Adsorption and Desorption Behavior in Coal Nanopores
May 2025
Publication
Underground hydrogen storage (UHS) in geological formations presents a viable option for long-term large-scale H2 storage. A physical coal model was constructed based on experimental tests and a MD simulation was used to investigate the potential of UHS in underground coal gasification (UCG) cavities. We investigated H2 behavior under various conditions including temperatures ranging from 278.15 to 348.15 K pressures in the range of 5–20 MPa pore sizes ranging from 1 to 20 nm and varying water content. We also examined the competitive adsorption dynamics of H2 in the presence of CH4 and CO2 . The findings indicate that the optimal UHS conditions for pure H2 involve low temperatures and high pressures. We found that coal nanopores larger than 7.5 nm optimize H2 diffusion. Additionally higher water content creates barriers to hydrogen diffusion due to water molecule clusters on coal surfaces. The preferential adsorption of CO2 and CH4 over H2 reduces H2 -coal interactions. This work provides a significant understanding of the microscopic behaviors of hydrogen in coal nanopores at UCG cavity boundaries under various environmental factors. It also confirms the feasibility of underground hydrogen storage (UHS) in UCG cavities.
A Configuration and Scheduling Optimization Method for Integrated Energy Systems Considering Massive Flexible Load Resources
Mar 2025
Publication
Introduction: With the increasing demand for energy utilization efficiency and minimization of environmental carbon emissions in industrial parks optimizing the configuration and scheduling of integrated energy systems has become crucial. This study focuses on integrated energy systems with massive flexible load resources aiming to maximize energy utilization efficiency while reducing environmental impact. Methods: To model the uncertainties in wind and solar power outputs we employed three-parameter Weibull distribution models and Beta distribution models. Flexible loads were categorized into three types to match different electricity consumption patterns. Additionally an enhanced Kepler Optimization Algorithm (EKOA) was proposed incorporating chaos mapping and adaptive learning rate strategies to improve search scope convergence speed and solution efficiency. The effectiveness of the proposed optimization scheduling and configuration methods was validated through a case study of an industrial park located in a coastal area of southeastern China. Results: The results show that using three-parameter Weibull distribution models and Beta distribution models more accurately reflects the variations in actual wind speeds and solar irradiance levels achieving peak shaving and valley filling effects and enhancing renewable energy utilization. The EKOA algorithm significantly reduced curtailment rates of wind and solar power generation while achieving substantial economic benefits. Compared with other operation modes of hydrogen the daily average cost is reduced by 12.92% and external electricity purchases are reduced by an average of 20.2 MW h/day. Discussion: Although our approach shows potential in improving energy utilization efficiency and economic gains this paper only considered hydrogen energy for single-use pathways and did not account for the economic benefits from selling hydrogen in the market. Future research will further incorporate hydrogen demand response mechanisms and optimize the output of integrated energy systems from the perspective of spot markets. These findings provide valuable references for relevant engineering applications.
No more items...