Numerical Simulation Study on Hydrogen Leakage and Explosion of Hydrogen Fuel Cell Buses
Abstract
This study explores the safety problems of hydrogen leakage and explosion in hydrogen fuel cell buses through Computational Fluid Dynamics simulations. The research investigates the diffusion behavior of hydrogen in the passenger cabin depending on the leakage position and flow rates, identifying a stratified, constant-concentration layer formed at the top of the cabin. Leakage near the rear wall of the vehicle provided the highest hydrogen concentration, while at higher flow rates, the diffusive process accelerated the spreading of flammable hydrogen concentrations. Hydrogen ignition simulations showed a fast internal pressure increase and secondary explosions outside the vehicle. Thermal hazards in the cases were higher than overpressure. The research’s additional analysis of ignition timing and source location shows that overpressure peaked initially with delayed ignition but declined afterward, while rear-ignited flames exhibited the farthest high-temperature hazard range at 10.88 m. These findings are fundamental for giving insight into hydrogen behavior in confined spaces and thus guiding risk assessment and emergency response planning for the development of safety protocols in hydrogen fuel cell buses, contributing to the safer implementation of hydrogen energy in public transportation.