Colombia
Challenges and Potential Future Trends on High Entropy Alloy for Solid Hydrogen Storage: Systematic Review
Aug 2025
Publication
This work consists of a systematic review showing recent progress and trends in the development of high entropy alloys (HEA) for solid-state hydrogen storage. The information was compiled from academic papers from the following databases: Google Scholar ScienceDirect Springer SCOPUS American Chemical Society MDPI; as well as the patent banks United States Patent and Trademark Office Google Patent and lens.org. This article discusses key aspects such as HEA design (elements used thermodynamic and geometric characteristics thermodynamic simulations and synthesis methods); HEA evaluation focusing on crystallinity thermal behavior and hydrogen storage; HEA-related trends including MgH2 modification the advancement of lightweight alloys and the use of machine learning.
Mapping Current Research on Hydrogen Supply Chain Design for Global Trade
Sep 2025
Publication
Global demand for clean energy carriers like hydrogen (H2) is rising under carbon-reduction policies. While domestic H2 projects are progressing international trade presents significant opportunities for countries with abundant renewables or advanced production capabilities. Yet establishing H2 as a viable global commodity requires overcoming supply chain challenges in flexibility efficiency and cost. This review examines hydrogen supply chain network design (HSCND) studies and highlights key research gaps in export-oriented systems. Current work often focuses on transport technologies but lacks integrated analyses combining technical economic and policy dimensions. Notable gaps include limited research on retrofitting infrastructure for H2 derivatives underexplored roles of ports as export hubs and insufficient evaluation of regulatory frameworks and financial risks. This review proposes a methodological approach to guide HSCND for export supporting data collection and strategic planning. Future research should integrate technical geopolitical and social factors into models backed by methodological innovation and empirical evidence.
Experimental Assessment of Performance and Emissions for Hydrogen-diesel Dual Fuel Operation in a Low Displacement Compression Ignition Engine
Apr 2022
Publication
The combustion of pure H2 in engines is still troublesome needing further research and development. Using H2 and diesel in a dual-fuel compression ignition engine appears as a more feasible approach. Here we report an experimental assessment of performance and emissions for a single-cylinder four-stroke air-cooled compression ignition engine operating with neat diesel and H2-diesel dual-fuel. Previous studies typically show the performance and emissions for a specific operation condition (i.e. a fixed engine speed and torque) or a limited operating range. Our experiments covered engine speeds of 3000 and 3600 rpm and torque levels of 3 and 7 Nm. An in-house designed and built alkaline cell generated the H2 used for the partial substitution of diesel. Compared with neat diesel the results indicate that adding H2 decreased the air-fuel equivalence ratio and the Brake Specific Diesel Fuel Consumption Efficiency by around 14–29 % and 4–31 %. In contrast adding H2 increased the Brake Fuel Conversion Efficiency by around 3–36 %. In addition the Brake Thermal Efficiency increased in the presence of H2 in the range of 3–37 % for the lower engine speed and 27–43 % for the higher engine speed compared with neat diesel. The dual-fuel mode resulted in lower CO and CO2 emissions for the same power output. The emissions of hydrocarbons decreased with H2 addition except for the lower engine speed and the higher torque. However the dual-fuel operation resulted in higher NOx emissions than neat diesel with 2–6 % and 19–48 % increments for the lower and higher engine speeds. H2 emerges as a versatile energy carrier with the potential to tackle current energy and emissions challenges; however the dual-fuel strategy requires careful management of NOx emissions.
Performance Assessment and Economic Perspectives of Integrated PEM Fuel Cell and PEM Electrolyzer for Electric Power Generation
Mar 2021
Publication
The study presents a complete one-dimensional model to evaluate the parameters that describe the operation of a Proton Exchange Membrane (PEM) electrolyzer and PEM fuel cell. The mathematical modeling is implemented in Matlab/Simulink® software to evaluate the influence of parameters such as temperature pressure and overpotentials on the overall performance. The models are further merged into an integrated electrolyzer-fuel cell system for electrical power generation. The operational description of the integrated system focuses on estimating the overall efficiency as a novel indicator. Additionally the study presents an economic assessment to evaluate the cost-effectiveness based on different economic metrics such as capital cost electricity cost and payback period. The parametric analysis showed that as the temperature rises from 30 to 70 C in both devices the efficiency is improved between 5-20%. In contrast pressure differences feature less relevance on the overall performance. Ohmic and activation overpotentials are highlighted for the highest impact on the generated and required voltage. Overall the current density exhibited an inverse relation with the efficiency of both devices. The economic evaluation revealed that the integrated system can operate at variable load conditions while maintaining an electricity cost between 0.3-0.45 $/kWh. Also the capital cost can be reduced up to 25% while operating at a low current density and maximum temperature. The payback period varies between 6-10 years for an operational temperature of 70 C which reinforces the viability of the system. Overall hydrogen-powered systems stand as a promising technology to overcome energy transition as they provide robust operation from both energetic and economic viewpoints.
Realistic Electrolyzer Temperature and Pressure Conditions Evaluation of NiFeP/Zn-coated Electrodes for Alkaline Water Splitting
Jul 2025
Publication
The current transition to renewable energies has motivated research into energy storage using various techniques. Of these electrolysis for pure hydrogen production stands out as hydrogen is a crucial energy vector molecule capable of decarbonizing multiple sectors. However the low efficiency of the electrolysis process presents a major limitation. In this work an electrochemical evaluation of catalyst materials for water splitting under elevated temperature and pressure (ETP) conditions to replicate realistic electrolyzer operating environments is proposed. The NiFeP/Zn-coated nickel foam electrodes demonstrated a brain-like compact morphology with EDS revealing a composition of 62.20 at% Ni 13.90 at% Fe 1.60 at% Zn 7.65 at% P and 15.21 at% O2. Electrochemical performance tests revealed a significant reduction in overpotential for the hydrogen evolution reaction (HER) achieving 38 mV at 8 bar and 80 ◦C while the oxygen evolution reaction (OER) exhibited 119 mV at 1 bar and 80 ◦C both at |30| mAcm− 2 . Chronopotentiometry confirmed the stability of the coating for over 24 h at high current density of |400| mAcm− 2 . The bifunctional capability of the coating was validated in a fullcell test obtaining a remarkably low overpotential of 1.47 V at 30 mAcm− 2 for overall water splitting under 80 ◦C and 8 bar conditions.
Renewable Energy Sources for Green Hydrogen Generation in Colombia and Applicable Case of Studies
Nov 2023
Publication
Electrification using renewable energy sources represents a clear path toward solving the current global energy crisis. In Colombia this challenge also involves the diversification of the electrical energy sources to overcome the historical dependence on hydropower. In this context green hydrogen represents a key energy carrier enabling the storage of renewable energy as well as directly powering industrial and transportation sectors. This work explores the realistic potential of the main renewable energy sources including solar photovoltaics (8172 GW) hydropower (56 GW) wind (68 GW) and biomass (14 GW). In addition a case study from abroad is presented demonstrating the feasibility of using each type of renewable energy to generate green hydrogen in the country. At the end an analysis of the most likely regions in the country and paths to deploy green hydrogen projects are presented favoring hydropower in the short term and solar in the long run. By 2050 this energy potential will enable reaching a levelized cost of hydrogen (LCOH) of 1.7 1.5 3.1 and 1.4 USD/kg-H2 for solar photovoltaic wind hydropower and biomass respectively.
Hydrogen Combustion in Micromix Burners: Present Stages, Opportunities, and Challenges
Nov 2024
Publication
Due to its low NOx emission index the micromix burner technology is a promising alternative for using hydrogen in combustion. Various universities and research centers in Germany England and Spain have documented and studied this technology. However the number of studies on micromix burners is limited which hinders their implementation on an industrial scale. The present study aims to review developed works focused on micromix combustion technologies to identify the main gaps and research needs. A sample of 76 articles from 2008 was selected using the PRISMA methodology which was categorized based on the study methodology simulation software and fuels used. An experimental gap has been identified in the combustion of hydrogen and methane in the selected article sample. This gap is a critical research need due to the opportunity to implement this tech nology in existing natural gas networks facilitating the transition from fossil fuels to cleaner combustion processes.
Assessing the Impacts of Low-carbon Intensity Hydrogen Integration in Oil Refineries
Nov 2024
Publication
This paper evaluates the potential impacts of introducing low-carbon intensity hydrogen technologies in two oil refineries with different complexity levels emphasizing the role of hydrogen production in reducing CO2 emissions. The novelty of this work lies in three key aspects: Comprehensive system analysis of refinery complexity using real site data integration of low-carbon Hydrogen technologies long-term and short-term strategies. Two Colombian refineries serve as case studies with technological solutions adapted to their complexity levels. The methodology involves evaluating different options for hydrogen production accounting for improvement in technological efficiency over time.<br/>The refinery systems were evaluated in a cost-optimization model built in Linny-r. Three different scenarios were considered Business-As-Usual (BAU) high and low-ambitions decarbonization scenarios focusing on the time horizons of 2030 and 2050.<br/>When comparing the two case studies the preferred decarbonization strategy for both facilities involves the substitution of SMR technology with water electrolyzers powered by renewable electricity. Post-2030 biomass-based hydrogen technology is still a costly alternative; however to achieve CO2 neutrality negative emissions storage of biogenic CO2 emerges as an achievable alternative.<br/>Our results indicate the achievability of CO2 reduction objectives in both refineries. Our results show that achieving long-term CO2 neutrality requires both refineries to increase renewable electricity production by 5 to 6 times for powering water electrolyzers steam production by 2 to 2.5 times for CO2 capture and supply of dry biomass by 2.6 to 4.5 kt/d.<br/>The two most significant factors influencing the refining net margin in the decarbonization scenarios are primarily the CO2 and the renewable electricity prices. The short-term horizon emerges as the pivotal period particularly within the high-ambition decarbonization scenarios. In this context the medium complexity refinery demonstrates economic viability until a CO2 price of 140 €/t CO2 while the high complexity refinery endures up to 205 €/t CO2.<br/>The high complexity refinery is better prepared to face the challenges of decarbonization and the impacts generated on the refining margin. Compared to the BAU scenario the high complexity refinery shows a negative impact on the net margin that corresponds to a 40% and 5% reduction in the short and long term respectively. Meanwhile for the medium complexity refinery the impact on net margin amounts to a 52% reduction in the short term and a 27% improvement in the long term.<br/>Furthermore our research highlights the significant potential for reducing CO2 emissions by fully eliminating the use of refinery gas as fuel providing alternative applications for it beyond combustion.
Economic Evaluation and Technoeconomic Resilience Analysis of Two Routes for Hydrogen Production via Indirect Gasification in North Colombia
Nov 2023
Publication
Hydrogen has become a prospective energy carrier for a cleaner more sustainable economy offering carbon-free energy to reduce reliance on fossil fuels and address climate change challenges. However hydrogen production faces significant technological and economic hurdles that must be overcome to reveal its highest potential. This study focused on evaluating the economics and technoeconomic resilience of two large-scale hydrogen production routes from African palm empty fruit bunches (EFB) by indirect gasification. Computer-aided process engineering (CAPE) assessed multiple scenarios to identify bottlenecks and optimize economic performance indicators like gross profits including depreciation after-tax profitability payback period and net present value. Resilience for each route was also assessed considering raw material costs and the market price of hydrogen in relation to gross profits and after-tax profitability. Route 1 achieved a gross profit (DGP) of USD 47.12 million and a profit after taxes (PAT) of USD 28.74 million while Route 2 achieved a DGP of USD 46.53 million and a PAT of USD 28.38 million. The results indicated that Route 2 involving hydrogen production through an indirect gasification reactor with a Selexol solvent unit for carbon dioxide removal demonstrated greater resilience in terms of raw material costs and product selling price.
Entropy Production and Filling Time in Hydrogen Refueling Stations: An Economic Assessment
Aug 2024
Publication
A multi-objective optimization is performed to obtain fueling conditions in hydrogen stations leading to improved filling times and thermodynamic efficiency (entropy production) of the de facto standard of operation which is defined by the protocol SAE J2601. After finding the Pareto frontier between filling time and total entropy production it was found that SAE J2601 is suboptimal in terms of these process variables. Specifically reductions of filling time from 47 to 77% are possible in the analyzed range of ambient temperatures (from 10 to 40 °C) with higher saving potential the hotter the weather conditions. Maximum entropy production savings with respect to SAE J2601 (7% for 10 °C 1% for 40 °C) demand a longer filling time that increases with ambient temperature (264% for 10 °C 350% for 40 °C). Considering average electricity prices in California USA the operating cost of the filling process can be reduced between 8 and 28% without increasing the expected filling time.
Performance Assessment and Predictive Modeling of a Hybrid Hydrogen-Natural Gas Water Heater Using Experimental Data and Machine Learning
Aug 2025
Publication
In response to the global need to reduce greenhouse gas emissions and advance the decarbonization of thermal energy systems this study evaluates the performance of a tankless water heater operating with hydrogen–natural gas blends. The objective is to improve thermal efficiency and reduce pollutant emissions without requiring major modifications to existing equipment. Experimental tests were conducted at three thermal power levels (35 40 and 45 kW) and four hydrogen volume fractions (0% 20% 40% and 60%) analyzing operational variables such as temperatures flow rates efficiency and NOx emissions. Results show that efficiency increases with hydrogen content particularly at lower power levels reaching a maximum of 56%. NOx emissions tend to rise with both power and hydrogen fraction although this effect can be mitigated by controlling the water flow rate. In addition machine learning models were trained to predict efficiency and emissions with the scaled Support Vector Regression (SVR) model achieving R² values above 90% for both outputs. This approach not only enables system optimization but also represents a step toward the implementation of digital twins and opens the door to monitoring indirect variables offering broad potential for predictive applications in thermal equipment.
No more items...