Germany
Hydrogen Detection- Visualisation of Hydrogen Using Non Invasive Optical Schlieren Technique BOS
Sep 2005
Publication
The detection of hydrogen after its accidental release is not only important for research purposes but will be much more important under safety aspects for future applications when hydrogen should be a standard energy resource. At Fraunhofer ICT two principally different approaches were made: first the new optical background-oriented schlieren method (BOS) is used for the visualization of hydrogen distribution and mixing processes at a rate of up to 1000 frames per second. The results from experiments with small scale injection of hydrogen/air–mixtures into air flows and free jets of hydrogen and hydrogen/air–mixtures emerging from 1” hoses simulating exhaust pipes will be discussed and interpreted with support from selected high speed videos. Finally mixing zones and safety distances can be determined by this powerful method.
HySafe European Network of Excellence on Hydrogen Safety
Sep 2005
Publication
Introduction and commercialisation of hydrogen as an energy carrier of the future make great demands on all aspects of safety. Safety is a critical issue for innovations as it influences the economic attractiveness and public acceptance of any new idea or product. However research and safety expertise related to hydrogen is quite fragmented in Europe. The vision of a significant increased use of hydrogen as an energy carrier in Europe could not go ahead without strengthening and merging this expertise. This was the reason for the European Commission to support the launch on the first of March 2004 of a so-called Network of Excellence (NoE) on hydrogen safety: HySafe.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
Experimental Study of Hydrogen-Air Deflagrations in Flat Layer
Sep 2007
Publication
In the present paper the results of experiments on study of high-speed deflagrations in flat layer of hydrogen-air mixtures unconfined from below are presented. The experiments were performed in two different rectangular channels: small-scale with mixture volume up to 0.4 m3 and large-scale with volume up to 5.5 m3. The main goal of the experiments was to examine the possibility of the layer geometries to maintain high-speed deflagration and detonation. With the aim to study a range of combustion regimes the experiments were performed varying degree of channel obstruction hydrogen concentration and thickness of the layer. Depending on the experimental conditions all major combustion regimes were observed: slow flame fast – ‘choked’ flame and steady-state detonation. It was found that minimum layer layer thickness in the range of 8 to 15 detonation cell widths is required for sustainable detonations.
Hydrogen-air Deflagrations in Open Atmosphere- Large Eddy Simulation Analysis of Experimental Data
Sep 2005
Publication
The largest known experiment on hydrogen-air deflagration in the open atmosphere has been analysed by means of the large eddy simulation (LES). The combustion model is based on the progress variable equation to simulate a premixed flame front propagation and the gradient method to decouple the physical combustion rate from numerical peculiarities. The hydrodynamic instability has been partially resolved by LES and unresolved effects have been modelled by Yakhot's turbulent premixed combustion model. The main contributor to high flame propagation velocity is the additional turbulence generated by the flame front itself. It has been modelled based on the maximum flame wrinkling factor predicted by Karlovitz et al. theory and the transitional distance reported by Gostintsev with colleagues. Simulations are in a good agreement with experimental data on flame propagation dynamics flame shape and outgoing pressure wave peaks and structure. The model is built from the first principles and no adjustable parameters were applied to get agreement with the experiment.
Path to Hydrogen Competitiveness: A Cost Perspective
Jan 2020
Publication
This latest Hydrogen Council report shows that the cost of hydrogen solutions will fall sharply within the next decade – and sooner than previously expected. As scale up of hydrogen production distribution equipment and component manufacturing continues cost is projected to decrease by up to 50% by 2030 for a wide range of applications making hydrogen competitive with other low-carbon alternatives and in some cases even conventional options.
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
- Strong fall in the cost of producing low carbon and renewable hydrogen;
- Lower distribution and refuelling costs thanks to higher load utilisation and scale effect on infrastructure utilisation; and
- Dramatic drop in the cost of components for end-use equipment under scaling up of manufacturing.
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
The Curious Case of the Conflicting Roles of Hydrogen in Global Energy Scenarios
Oct 2019
Publication
As energy systems transition from fossil-based to low-carbon they face many challenges particularly concerning energy security and flexibility. Hydrogen may help to overcome these challenges with potential as a transport fuel for heating energy storage conversion to electricity and in industry. Despite these opportunities hydrogen has historically had a limited role in influential global energy scenarios. Whilst more recent studies are beginning to include hydrogen the role it plays in different scenarios is extremely inconsistent. In this perspective paper reasons for this inconsistency are explored considering the modelling approach behind the scenario scenario design and data assumptions. We argue that energy systems are becoming increasingly complex and it is within these complexities that new technologies such as hydrogen emerge. Developing a global energy scenario that represents these complexities is challenging and in this paper we provide recommendations to help ensure that emerging technologies such as hydrogen are appropriately represented. These recommendations include: using the right modelling tools whilst knowing the limits of the model; including the right sectors and technologies; having an appropriate level of ambition; and making realistic data assumptions. Above all transparency is essential and global scenarios must do more to make available the modelling methods and data assumptions used.
Radiation Damage of Reactor Pressure Vessel Steels Studied by Positron Annihilation Spectroscopy—A Review
Oct 2020
Publication
Safe and long term operation of nuclear reactors is one of the most discussed challenges in nuclear power engineering. The radiation degradation of nuclear design materials limits the operational lifetime of all nuclear installations or at least decreases its safety margin. This paper is a review of experimental PALS/PLEPS studies of different nuclear reactor pressure vessel (RPV) steels investigated over last twenty years in our laboratories. Positron annihilation lifetime spectroscopy (PALS) via its characteristics (lifetimes of positrons and their intensities) provides useful information about type and density of radiation induced defects. The new results obtained on neutron-irradiated and hydrogen ions implanted German steels were compared to those from the previous studies with the aim to evaluate different processes (neutron flux/fluence thermal treatment or content of selected alloying elements) to the microstructural changes of neutron irradiated RPV steel specimens. The possibility of substitution of neutron treatment (connected to new defects creation) via hydrogen ions implantation was analyzed as well. The same materials exposed to comparable displacement damage (dpa) introduced by neutrons and accelerated hydrogen ions shown that in the results interpretation the effect of hydrogen as a vacancy-stabilizing gas must be considered too. This approach could contribute to future studies of nuclear fission/fusion design steels treated by high levels of neutron irradiation.
Modelling and Optimization of a Flexible Hydrogen-fueled Pressurized PEMFC Power Plant for Grid Balancing Purposes
Feb 2021
Publication
In a scenario characterized by an increasing penetration of non-dispatchable renewable energy sources and the need of fast-ramping grid-balancing power plants the EU project GRASSHOPPER aims to setup and demonstrate a highly flexible PEMFC Power Plant hydrogen fueled and scalable to MW-size designed to provide grid support.<br/>In this work different layouts proposed for the innovative MW-scale plant are simulated to optimize design and off-design operation. The simulation model details the main BoP components performances and includes a customized PEMFC model validated through dedicated experiments.<br/>The system may operate at atmospheric or mild pressurized conditions: pressurization to 0.7 barg allows significantly higher net system efficiency despite the increasing BoP consumptions. The additional energy recovery from the cathode exhaust with an expander gives higher net power and net efficiency adding up to 2%pt and reaching values between 47%LHV and 55%LHV for currents between 100% and 20% of the nominal value.
The Future Potential Hydrogen Demand in Energy-intensive Industries - A Site-specific Approach Applied to Germany
Dec 2021
Publication
Hydrogen when based on renewable electricity can play a key role in the transition towards CO2-neutral industrial production since its use as an energy carrier as well as a feedstock in various industrial process routes is promising. At the same time a large-scale roll-out of hydrogen for industrial use would entail substantial impacts on the energy system which can only be assessed if the regional distribution of future hydrogen demand is considered. Here we assess the technical potential of hydrogen-based technologies for energy-intensive industries in Germany. The site-specific and process-specific bottom-up calculation considers 615 individual plants at 367 sites and results in a total potential hydrogen demand of 326 TWh/a. The results are available as an open dataset. Using hydrogen for non-energy-intensive sectors as well increases the potential hydrogen demand to between 482 and 534 TWh/a for Germany - based on today’s industrial structure and production output. This assumes that fossil fuels are almost completely replaced by hydrogen for process heating and feedstocks. The resulting hydrogen demand is very unevenly distributed: a few sites account for the majority of the overall potential and similarly the bulk of demand is concentrated in a few regions with steel and chemical clusters.
HYDRIDE4MOBILITY: An EU HORIZON 2020 Project on Hydrogen Powered Fuel Cell Utility Vehicles Using Metal Hydrides in Hydrogen Storage and Refuelling Systems
Feb 2021
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Vladimir Linkov,
Sivakumar Pasupathi,
Moegamat Wafeeq Davids,
Gojmir Radica,
Roman V. Denys,
Jon Eriksen,
José Bellosta von Colbe,
Klaus Taube,
Giovanni Capurso,
Martin Dornheim,
Fahmida Smith,
Delisile Mathebula,
Dana Swanepoel,
Suwarno Suwarno and
Ivan Tolj
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells together with the systems for their refuelling at industrial customers facilities. For these applications high specific weight of the metallic hydrides has an added value as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level simplification of the design and reducing the system cost together with improvement of the efficiency of system “MH store-FC” is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway Germany Croatia) and two partner countries (South Africa and Indonesia).<br/>The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.<br/>This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019).
Review and Assessment of the Effect of Hydrogen Gas Pressure on the Embrittlement of Steels in Gaseous Hydrogen Environment
Apr 2021
Publication
Hydrogen gas pressure is an important test parameter when considering materials for high-pressure hydrogen applications. A large set of data on the effect of hydrogen gas pressure on mechanical properties in gaseous hydrogen experiments was reviewed. The data were analyzed by converting pressures into fugacities (f) and by fitting the data using an f|n| power law. For 95% of the data sets |n| was smaller than 0.37 which was discussed in the context of (i) rate-limiting steps in the hydrogen reaction chain and (ii) statistical aspects. This analysis might contribute to defining the appropriate test fugacities (pressures) to qualify materials for gaseous hydrogen applications.
Irreproducibility in Hydrogen Storage Material Research
Sep 2016
Publication
The storage of hydrogen in materials has received a significant amount of attention in recent years because this approach is widely thought to be one of the most promising solutions to the problem of storing hydrogen for use as an alternative energy carrier in a safe compact and affordable form. However there have been a number of high profile cases in which erroneous or irreproducible data have been published. Meanwhile the irreproducibility of research results in a wide range of disciplines has been the subject of an increasing amount of attention due to problems with some of the data in the literature. In this Perspective we provide a summary of the problems that have affected hydrogen storage material research. We also discuss the reasons behind them and possible ways of reducing the likelihood of further problems occurring in the future.
The Limitations of Hydrogen Blending in the European Gas Grid
Jan 2022
Publication
In recent years various studies have put forward the prospect of relying on low-carbon or renewable gases such as green hydrogen (H2) or biomethane to replace the supply of natural gas. Hydrogen in particular is receiving much attention as a versatile energy carrier that could complement direct electrification in a plethora of end-uses and questions over its production and deployment play an important part in the ongoing discussions around the energy chapters of the European Commission’s Green Deal agenda.
The aim of the short study was to assess the technical feasibility emission savings and cost impacts of the addition of hydrogen to the existing gas transport network the so-called practice of “hydrogen blending” which is currently being discussed as a deployment pathway in the context of the review of the EU Gas Market Regulation (GMR) and the Trans-European Networks for Energy (TEN-E) regulation.
The document can be downloaded from their website
The aim of the short study was to assess the technical feasibility emission savings and cost impacts of the addition of hydrogen to the existing gas transport network the so-called practice of “hydrogen blending” which is currently being discussed as a deployment pathway in the context of the review of the EU Gas Market Regulation (GMR) and the Trans-European Networks for Energy (TEN-E) regulation.
The document can be downloaded from their website
Mechanism of Action of Polytetrafluoroethylene Binder on the Performance and Durability of High-temperature Polymer Electrolyte Fuel Cells
Feb 2021
Publication
In this work new insights into impacts of the polytetrafluoroethylene (PTFE) binder on high temperature polymer electrolyte fuel cells (HT-PEFCs) are provided by means of various characterizations and accelerated stress tests. Cathodes with PTFE contents from 0 wt% to 60 wt% were fabricated and compared using electrochemical measurements. The results indicate that the cell with 10 wt% PTFE in the cathode catalyst layer (CCL) shows the best performance due to having the lowest mass transport resistance and cathode protonic resistance. Moreover cyclic voltammograms show that Pt (100) edge and corner sites are significantly covered by PTFE and phosphate anions when the PTFE content is higher than 25 wt%. Open-circuit and low load-cycling conditions are applied to accelerate degradation processes of the HT-PEFCs. The PTFE binder shows a network structure in the pores of the catalyst layer which reduces phosphoric acid leaching during the aging tests. In addition the high binder HT-PEFCs more easily suffer from a mass transport problem leading to more severe performance degradation.
Research and Development of Hydrogen Carrier Based Solutions for Hydrogen Compression and Storage
Aug 2022
Publication
Martin Dornheim,
Lars Baetcke,
Etsuo Akiba,
Jose-Ramón Ares,
Tom Autrey,
Jussara Barale,
Marcello Baricco,
Kriston Brooks,
Nikolaos Chalkiadakis,
Véronique Charbonnier,
Steven Christensen,
José Bellosta von Colbe,
Mattia Costamagna,
Erika Michela Dematteis,
Jose-Francisco Fernández,
Thomas Gennett,
David Grant,
Tae Wook Heo,
Michael Hirscher,
Katherine Hurst,
Mykhaylo V. Lototskyy,
Oliver Metz,
Paola Rizzi,
Kouji Sakaki,
Sabrina Sartori,
Emmanuel Stamatakis,
Alastair D. Stuart,
Athanasios Stubos,
Gavin Walker,
Colin Webb,
Brandon Wood,
Volodymyr A. Yartys and
Emmanuel Zoulias
Industrial and public interest in hydrogen technologies has risen strongly recently as hydrogen is the ideal means for medium to long term energy storage transport and usage in combination with renewable and green energy supply. In a future energy system the production storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper we summarize the newest developments of hydrogen carriers for storage and compression and in addition give an overview of the different research activities in this field.
Enabling Large-scale Hydrogen Storage in Porous Media – The Scientific Challenges
Jan 2021
Publication
Niklas Heinemann,
Juan Alcalde,
Johannes M. Miocic,
Suzanne J. T. Hangx,
Jens Kallmeyer,
Christian Ostertag-Henning,
Aliakbar Hassanpouryouzband,
Eike M. Thaysen,
Gion J. Strobel,
Cornelia Schmidt-Hattenberger,
Katriona Edlmann,
Mark Wilkinson,
Michelle Bentham,
Stuart Haszeldine,
Ramon Carbonell and
Alexander Rudloff
Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy. To facilitate hydrogen supply on the scales required for a zero-carbon future it must be stored in porous geological formations such as saline aquifers and depleted hydrocarbon reservoirs. Large-scale UHSP offers the much-needed capacity to balance inter-seasonal discrepancies between demand and supply decouple energy generation from demand and decarbonise heating and transport supporting decarbonisation of the entire energy system. Despite the vast opportunity provided by UHSP the maturity is considered low and as such UHSP is associated with several uncertainties and challenges. Here the safety and economic impacts triggered by poorly understood key processes are identified such as the formation of corrosive hydrogen sulfide gas hydrogen loss due to the activity of microbes or permeability changes due to geochemical interactions impacting on the predictability of hydrogen flow through porous media. The wide range of scientific challenges facing UHSP are outlined to improve procedures and workflows for the hydrogen storage cycle from site selection to storage site operation. Multidisciplinary research including reservoir engineering chemistry geology and microbiology more complex than required for CH4 or CO2 storage is required in order to implement the safe efficient and much needed large-scale commercial deployment of UHSP.
No more items...