Spain
From Grey to "Green": Modelling the Non-energy Uses of Hydrogen for the EU Energy Transition
Jun 2025
Publication
Hydrogen (H2) used as feedstock (i.e. as raw material) in chemicals refineries and steel is currently produced from fossil fuels thus leading to significant carbon dioxide (CO2) emissions. As these hard-to-abate sectors have limited electrification alternatives H2 produced by electrolysis offers a potential option for decarbonising them. Existing modelling analyses to date provide limited insights due to their predominant use of sector-specific static non-recursive and non-open models. This paper advances research by presenting a dynamic recursive open-access energy model using System Dynamics to study long-term systemic and environmental impacts of transitioning from fossil-based methods to electrolytic H2 production for industrial feedstock. The regional model adopts a bottom-up approach and is applied to the EU across five innovative decarbonisation scenarios including varying technological transition speeds and a paradigm-shift scenario (Degrowth). Our results indicate that assuming continued H2 demand trends and large-scale electrolytic H2 deployment by 2030 grid decarbonisation in the EU must accelerate to ensure green H2 for industrial feedstock emits less CO2 than fossil fuel methods doubling the current pace. Otherwise electrolytic H2 won’t offer clear CO2 reduction benefits until 2040. The most effective CO2 emission mitigation occurs in growth-oriented ambitious decarbonisation (− 91 %) and Degrowth (− 97 %) scenarios. From a sectoral perspective H2 use in steel industry achieves significantly greater decarbonisation (− 97 %). However meeting electricity demand for electrolytic H2 (700–1180 TWh in 2050 for 14–22.5 Mtons) in growth-oriented scenarios would require 25 %–42 % of the EU’s current electricity generation exceeding current renewable capacity and placing significant pressure on future power system development.
Emerging Application of Solid Oxide Electrolysis Cells in Hydrogen Production: A Comprehensive Analytic Review and Life Cycle Assessment
Aug 2025
Publication
This paper provides a comprehensive analytical review and life cycle assessment (LCA) of solid oxide electrolysis cells (SOECs) for hydrogen production. As the global energy landscape shifts toward cleaner and more sustainable solutions SOECs offer a promising pathway for hydrogen generation by utilizing water as a feedstock. Despite their potential challenges in efficiency economic viability and technological barriers remain. This review explores the evolution of SOECs highlighting key advancements and innovations over time and examines their operational principles efficiency factors and classification by operational temperature range. It further addresses critical technological challenges and potential breakthroughs alongside an indepth assessment of economic feasibility covering production cost comparisons hydrogen storage capacity and plant viability and an LCA evaluating environmental impacts and sustainability. The findings underscore SOECs’ progress and their crucial role in advancing hydrogen production while pointing to the need for further research to overcome existing limitations and enhance commercial viability.
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
Oct 2025
Publication
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However its practical application requires achieving a high degree of purity throughout the production process. In this study the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide alumina. Alumina and dolomite were coated with Ni at different loadings while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 ◦C with continuous monitoring of H2 CO2 CO and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%) mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast alumina and dolomite achieved H2 purities of around 70% which increased with Ni loading. The improvement was particularly significant in dolomite owing to its higher porosity and the recarbonation processes of CaO enabling H2 purities of up to 90%.
Opportunities for Emission Reduction in the Transformation of Petroleum Refining
Sep 2025
Publication
Crude oil accounts for approximately 40% of global energy consumption and the refining sector is a major contributor to greenhouse gas (GHG) emissions particularly through the production of hard-to-abate fuels such as aviation fuel and fuel oil. This study disaggregates the refinery into its key process units to identify decarbonization opportunities along the entire production chain. Units are categorized into combustion-based processes— including crude and vacuum distillation hydrogen production coking and fluid catalytic cracking—and non-combustion processes which exhibit lower emission intensities. The analysis reveals that GHG emissions can be reduced by up to 60% with currently available technologies without requiring major structural changes. Electrification residual heat recovery renewable hydrogen for desulfurization and process optimization through digital twins are identified as priority measures many of which are also economically viable in the short term. However achieving full decarbonization and alignment with net-zero targets will require the deployment of carbon capture technologies. These results highlight the significant potential for emission reduction in refineries and reinforce their strategic role in enabling the transition toward low-carbon fuels.
Thermochemical Aspects of Substituting Natural Gas by Hydrogen in Blister Copper Deoxidation
Aug 2025
Publication
This study employs computational thermodynamics to evaluate the feasibility of replacing methane with hydrogen as both burner fuel and reductant during blister copper deoxidation aiming to enhance deoxidation efficiency and reduce CO2 emissions. A comprehensive thermodynamic model was developed using FactSage 8.3 for dilute Cu–O and Cu–S–O melts containing trace impurities (Fe Ni Pb Zn) incorporating methane thermal decomposition and temperature-dependent variations in liquid copper density with oxygen and sulfur content. Model parameters were optimized against over 105 deoxidation simulation data points yielding temperature- and composition-dependent expressions for rapid density estimates. Benchmarking against existing literature models demonstrated improved accuracy. Key findings include: (1) increasing impurities contents from electronics waste recycling (Fe Ni Pb Zn) reduces oxygen activity deteriorating the deoxidation efficiency; (2) under global equilibrium methane provides greater reducing power per mole than hydrogen due to full thermal cracking but real-world mass transfer limitations render hydrogen more consistently effective up to 1200 C with methane gas needing to achieve at least 472 C to match hydrogen’s performance; (3) adiabatic flame equilibrium studies show that O2/H2 ratios of 0.5 to 1 yield liquid copper oxygen activities comparable to industrial O2/CH4 ratios of 2 to 3 supporting the direct substitution of methane with hydrogen in oxy-fuel anode furnace burners without compromising metal quality.
Energy Storage in the Energy Transition and Blue Economy: Challenges, Innovations, Future Perspectives, and Educational Pathways
Sep 2025
Publication
Transitioning to renewable energy is vital to achieving decarbonization at the global level but energy storage is still a major challenge. This review discusses the role of energy storage in the energy transition and the blue economy focusing on technological development challenges and directions. Effective storage is vital for balancing intermittent renewable energy sources like wind solar and marine energy with the power grid. The development of battery technologies hydrogen storage pumped hydro storage and emerging technologies like sodium-ion and metal-air batteries is discussed for their potential for large-scale deployment. Shortages in critical raw materials environmental impact energy loss and costs are some of the challenges to large-scale deployment. The blue economy promises opportunities for offshore energy storage notably through ocean thermal energy conversion (OTEC) and compressed air energy storage (CAES). Moreover the capacity of datadriven optimization and artificial intelligence to enhance storage efficiency is discussed. Policy interventions and economic incentives are necessary to spur the development and deployment of sustainable energy storage technology. Education and workforce training are also important in cultivating future researchers engineers and policymakers with the ability to drive energy innovation. Merging sustainability training with an interdisciplinary approach can potentially establish an efficient workforce that is capable of addressing energy issues. Future work needs to focus on higher energy density efficiency recyclability and cost-effectiveness of the storage technologies without sacrificing their environmental sustainability. The study underlines the need for converging technological economic and educational approaches to enable a sustainable and resilient energy future.
Retrofitted Production of Bio-hydrogen. Large-scale Biowaste Valorization via Solar-based Gasification
Aug 2025
Publication
Hydrogen production from gasification of biowaste generates large volumes of CO2 due to endothermic biowaste decomposition. Alternatively the Sun can provide that energy. To evaluate the yield and performance of solarbased gasifiers at country scale a multi-scale approach is required. First the operation of a solar gasifier is analyzed by developing a two-phase model validated and scaled to industrial level. Next the performance and yield of such technology as a function of the radiation received is studied taking Spain as a case study. The results were promising obtaining a syngas rich in H2. However tar and char were not reduced due to insufficient temperature. Scale-up studies revealed energy losses to the environment in the industrial-scale gasifier which suggested the use of segmented heating. In turn diameters no larger than 0.8 m and biomass feeding rates below 0.85 kg/s highlight the deployment of a modular design due to particle size limitations. Finally the large-scale waste valorization showed that the gasifier can only operate in Spain in the summer months. It can run over 180 h/month and more than 250 days/year only in C´ adiz and Santa Cruz de Tenerife which also showed the highest yearly production capacities.
Techno-Economic Analysis of Marine Hybrid Clusters for Use in Chile and Mexico
Oct 2025
Publication
This study assesses the feasibility and profitability of marine hybrid clusters combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena Chile with high and consistent wave energy resources and Ensenada Mexico with moderate and more variable wave power. Two WEC technologies Wave Dragon (WD) and Pelamis (PEL) were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture particularly in La Serena proves more profitable than for households. Ensenada’s clusters generate more surplus electricity suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions optimizing hybridization strategies and integrating consolidated industries such as aquaculture to enhance both economic and environmental benefits.
Solar-powered Hydrogen Production: Modelling PEM Electrolyser Systems for Optimal Integration with Solar Energy
Oct 2025
Publication
This study presents an experimental approach to modelling PEM electrolysers for green hydrogen production using solar energy. The objective is to implement a temperature steady-state electrolyser model to assess the optimal coupling configuration with a photovoltaic plant and estimate the yearly hydrogen production capacity. The research focuses on the energy consumption of ancillary systems under different load conditions developing a steady-state operational model that improves hydrogen production predictions by accounting for these consumptions. The model based on polynomial equations captures the non-linear variation in energy costs under partial load conditions. PEM electrolysers produce hydrogen above 3.0 quality (99.9% purity) and it is feasible to integrate purification processes to reach 5.0 quality (99.999% purity). While small-scale systems include purification large-scale facilities separate it enabling process optimisation. Two models are introduced to estimate hydrogen mass flow depending on purity: a base-purity model and a high-purity model that includes drying and pressure swing adsorption. Both are based on experimental data from a five-year-old small-scale electrolyser and are applicable to large-scale systems at partial load. Due to test conditions the model applied to large-scale facilities underestimates hydrogen production affected by energy losses from a non-optimised purification process and electrolyser degradation. Model validation with large-scale operational data from the literature shows the model captures plant behaviour well despite the consistent underestimation described above. The model is applied to several European locations to identify optimal photovoltaic-to-electrolyser ratios. Oversizing factors between 1.4 and 2 are needed to cover ancillary consumption. The levelised cost remains comparable for both purity levels despite higher energy demands for high-purity hydrogen due to the greater cost of the electrolyser over the photovoltaic plant.
Methodology for Evaluating and Comparing Different Sustainable Energy Generation and Storage Systems for Residential Buildings—Application to the Case of Spain
Nov 2025
Publication
This paper focuses on assessing different sustainable energy generation and storage systems for residential buildings in Spain identifying the best-performing system according to the end-user requirements. As outlined by the consulted literature the authors have selected two types of hybrid configurations—a Photovoltaic System with Battery Backup (PSBB) and a Photovoltaic System with Hydrogen Hybrid Storage Backup (PSHB)—and a Grid-Based System with Renewable Hydrogen Contribution (GSHC) is proposed. A Fuzzy Analytical Hierarchy Process methodology (FAHP) is employed for evaluating the hybrid power systems from a multi-criteria approach: acquisition operational and environmental. The main requirements for selecting the optimal system are organized under these criteria and evaluated using key performance indicators. This methodology allows the selection of the best option considering objective and subjective system performance indicators. Beyond establishing the ranking a sensitivity analysis was conducted to provide insights into how individual criteria influence the ranking of the hybrid power systems alternatives. The results demonstrate that the selection of hybrid power systems for a residential building is highly dependent on consumer preferences but the PSBB system scores highly in operation and acquisition criteria while the GSHC has good performance in all the criteria.
Towards the Decarbonization of the Maritime Industry: Design of a Novel Methodology for the Sustainable Strategy Assessment
Oct 2025
Publication
The growing concern about the increase in European Union (EU)’s total CO2 emissions due to maritime activities and the ambitious goal of net zero emissions they are asked to fulfil by 2050 are leading the way to the adoption of new sustainable strategies. In this article a novel methodology for the classification of the sustainable actions is proposed. Moreover new indicators have been designed to compare the level of sustainable development of each port. Among them a new coefficient for the assessment of the Ports’ Potential Sustainability (PPS) have been designed. Main results showed that 56% of the actions were in the improvement and environmentally sustainable group while 19% were shift-economic actions related to the installation of technologies. As a matter of the fact all European ports under analysis have adopted cold ironing system which can reduce up to 4% of the global shipping emissions. Similarly 50% of them have already integrated renewables energies and prioritize equipment electrification in their processes. Finally the most relevant projects to optimize the energy consumption of daily operations and the main challenges that still need to be addressed have been analyzed showing the current trends maritime sector is undertaking to advance towards the sustainable development.
Public Readiness for Hydrogen Infrastructure in Community Settings: Comparative Evidence on Attitudinal Dynamics
Oct 2025
Publication
This study presents a cross-national investigation into the drivers and psychological mechanisms shaping public perceptions and acceptance of hydrogen refuelling infrastructure located in residential proximity. Parallel survey data from Japan Spain and Norway were analysed using a multigroup comparative framework. Measurement invariance was established across the three datasets subject to minor modifications within the constructs of trust in hydrogen innovation safe housing concern and perceived usefulness. The conceptual models yielded generalisable findings across countries: negative emotions exerted a stronger influence on individuals' risk perceptions than positive emotions whereas perceived usefulness had a greater impact on acceptance than perceived risk. Safe housing and environmental concerns exhibited moderating effects that amplified the influence of affective responses towards hydrogen refuelling facilities with varying magnitudes across datasets. Furthermore the incorporation of Hofstede's cultural dimensions provided insights into cross-country differences revealing that individualism uncertainty avoidance and long-term orientation explain the psychological pathways through which affective states are translated into subjective evaluations of hydrogen facilities ultimately shaping community acceptance.
Machine Learning-aided Multi-objective Optimisation of Tesla Valve-based Membraneless Electrolyzer Efficiency
Oct 2025
Publication
Hydrogen (H2) is an attractive fuel due to its high specific energy and zero direct carbon emissions. Membraneless electrolyzers (MEs) offer a lower-cost route to hydrogen production but their operation is complex and current efficiencies are modest. Although multi-objective optimization is widely used its heavy compute demands and weak integration with modern learning methods limit scalability and adaptability. We introduce a practical ML-guided way to design Tesla-valve (TV) membraneless electrolyzers by building diodicity (Di) directly into the geometry search. Using multilayer-perceptron surrogates trained on 150 high-fidelity simulations (R2 > 0.95) we link four design knobs (We Wc Wd Di) to pressure drop (Δp) and ohmic loss. A Genetic Algorithm (GA)-based multi-objective search over realistic ranges delivers 60 Pareto-optimal designs that make the Δp–ohmic trade-off explicit; TOPSIS then selects a balanced geometry (We = 1.708 mm Wc = 0.200 mm Wd = 1.012 mm Di = 1.618) with ohmic loss 4.069 V and Δp 6.169 Pa. The approach delivers faster lower-cost design maps and is supported by experimental checks pointing to an actionable route for scalable interpretable optimization of sustainable hydrogen production.
Optimizing Green Hydrogen Cost with PV Energy and Storage
Oct 2025
Publication
This work develops a replicable method for designing the optimal renewable hydrogen production facility applicable to any site and based on technical parameters and actual equipment costs. The solution is based on the integration of photovoltaic (PV) energy with lithium-ion battery storage systems which maximizes electrolyzer operating hours and significantly reduces the Levelized Cost of Hydrogen (LCOH). This study shows that increasing the inclination of the photovoltaic modules reduces the need for storage optimizing operation and extending the electrolyzer’s annual operating hours. In the Seville case study with current costs and efficiencies a minimum LCOH of €4.43/kg was achieved a value well below market benchmarks opening the door to a potentially competitive industrial business. The analysis confirms that electrolyzer efficiency—particularly specific power consumption—is the most important factor in reducing costs while technological progress in photovoltaics storage and equipment promises further reductions in the coming years. Overall the proposed methodology offers a practical and scalable tool to accelerate the economic viability of green hydrogen in a variety of contexts.
Analysis of Fuel Cell Electric Vehicle Performance Under Standard Electric Vehicle Driving Protocol
Nov 2025
Publication
The paper studies and analyzes electric vehicle engines powered by hydrogen under the WLTP standard driving protocol. The driving range extension is estimated using a specific protocol developed for FCEV compared with the standard value for battery electric vehicles. The driving range is extended by 10 km averaging over the four protocols with a maximum of 11.6 km for the FTP-75 and a minimum of 7.7 km for the WLTP. This driving range extension represents a 1.8% driving range improvement on average. Applying the FCEV current weight the driving range is extended to 18.9 km and 20.4 km on average when using power source energy capacity standards for BEVs and FCEVs.
No more items...