United Kingdom
Prospectivity Analysis for Underground Hydrogen Storage, Taranaki Basin, Aotearoa New Zealand: A Multi-criteria Decision-making Approach
May 2024
Publication
Seasonal underground hydrogen storage (UHS) in porous media provides an as yet untested method for storing surplus renewable energy and balancing our energy demands. This study investigates the technical suitability for UHS in depleted hydrocarbon fields and one deep aquifer site in Taranaki Basin Aotearoa New Zealand. Prospective sites are assessed using a decision tree approach providing a “fast-track” method for identifying potential sites and a decision matrix approach for ranking optimal sites. Based on expert elicitation the most important factors to consider are storage capacity reservoir depth and parameters that affect hydrogen injectivity/withdrawal and containment. Results from both approaches suggest that Paleogene reservoirs from gas (or gas cap) fields provide the best option for demonstrating UHS in Aotearoa New Zealand and that the country’s projected 2050 hydrogen storage demand could be exceeded by developing one or two high ranking sites. Lower priority is assigned to heterolithic and typically finer grained labile and clay-rich Miocene oil reservoirs and to deep aquifers that have no proven hydrocarbon containment.
Energy Storage Strategy - Phase 2
Feb 2023
Publication
This document is phase 2 of the energy storage strategy study and it covers the storage challenges of the energy transition. We start in section 3 by covering historical and current natural gas imports into the UK and what these could look like in the future. In section 4 we explore what demand for hydrogen could look like – this has a high level of uncertainty and future policy decisions will have significant impacts on hydrogen volumes and annual variations. We generated two hydrogen storage scenarios based on National Grid’s Future Energy Scenarios and the Climate Change Committee’s Sixth Carbon Budget to assess the future need for hydrogen storage in the UK. We also looked at an extreme weather scenario resulting from an area of high-pressure settled over the British Isles resulting in very low ambient temperatures an unusually high demand for heating and almost no wind generation. In section 5 we investigate options for hydrogen storage and build on work previously carried out by SGN. We discuss the differences between the properties of hydrogen and natural gas and how this affects line pack and depletion of line pack. We discuss flexibility on the supply and demand side and how this can impact on hydrogen storage. We provide a summary table which compares the various options for storage. In section 5 we explore hydrogen trade and options for import and export. Using information from other innovation projects we also discuss production of hydrogen from nuclear power and the impact of hybrid appliances on gas demand for domestic heat. In section 7 we discuss the outputs from a stakeholder workshop with about 40 stakeholders across industry academia and government. The workshop covered UK gas storage strategy to date hydrogen demand and corresponding storage scenarios to 2050 including consideration of seasonal variation and storage options.
Investigations on Pressure Dependence of Coriolis Mass Flow Meters Used at Hydrogen Refueling Stations
Sep 2020
Publication
In the framework of the ongoing EMPIR JRP 16ENG01 ‘‘Metrology for Hydrogen Vehicles’’ a main task is to investigate the influence of pressure on the measurement accuracy of Coriolis Mass Flow Meters (CFM) used at Hydrogen Refueling Stations (HRS). At a HRS hydrogen is transferred at very high and changing pressures with simultaneously varying flow rates and temperatures. It is clearly very difficult for CFMs to achieve the current legal requirements with respect to mass flow measurement accuracy at these measurement conditions. As a result of the very dynamic filling process it was observed that the accuracy of mass flow measurement at different pressure ranges is not sufficient. At higher pressures it was found that particularly short refueling times cause significant measurement deviations. On this background it may be concluded that pressure has a great impact on the accuracy of mass flow measurement. To gain a deeper understanding of this matter RISE has built a unique high-pressure test facility. With the aid of this newly developed test rig it is possible to calibrate CFMs over a wide pressure and flow range with water or base oils as test medium. The test rig allows calibration measurements under the conditions prevailing at a 70 MPa HRS regarding mass flows (up to 3.6 kg min−1) and pressures (up to 87.5 MPa).
Review and Meta-analysis of Recent Life Cycle Assessments of Hydrogen Production
Apr 2023
Publication
The world is facing an urgent global climate challenge and hydrogen (H2) is increasingly valued as a carbon-free energy carrier that can play a prominent role in decarbonising economies. However the environmental impact of the different methods for hydrogen production are sometimes overlooked. This work provides a comprehensive overview of the environmental impacts and costs of a diverse range of methods for producing hydrogen. Ninety nine life cycle assessments (LCAs) of hydrogen production published between 2015 and 2022 are categorised by geography production method energy source goal and scope and compared by data sources and methodology. A meta-analysis of methodological choices is used to identify a subset of mutually comparable studies whose results are then compared initially by global warming potential (GWP) then low-GWP scenarios are compared by other indicators. The results show that the lowest GWP is achieved by methods that are currently more expensive (~US $4–9/kg H2) compared to the dominant methods of producing hydrogen from fossil fuels (~US $1–2/kg H2). The research finds that data are currently limited for comparing environmental indicators other than GWP such as terrestrial acidification or freshwater eutrophication. Recommendations are made for future LCAs of hydrogen production.
OIES Podcast - Hydrogen Pipelines vs. HVDC Lines
Nov 2023
Publication
In this podcast David Ledesma talks to Aliaksei Patonia and Veronika Lenivova about Hydrogen pipelines and high-voltage direct current (HVDC) transmission lines and how Hydrogen pipelines offer the advantage of transporting larger energy volumes but existing projects are dwarfed by the vast networks of HVDC transmission lines. The podcast discusses how advocates for hydrogen pipelines see potential in expanding these networks capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However hydrogen’s unique characteristics such as its small molecular size and compression requirements present construction challenges. On the other hand HVDC lines while less voluminous excel in efficiently transmitting green electrons over long distances. They already form an extensive global network and their efficiency makes them suitable for various applications. Yet intermittent renewable energy sources pose challenges for both hydrogen and electricity systems necessitating solutions like storage and blending.
The podcast can be found on their website.
The podcast can be found on their website.
Modelling Underground Hydrogen Storage: A State-of-the-art Review of Fundamental Approaches and Findings
Dec 2023
Publication
This review presents a state-of-the-art of geochemical geomechanical and hydrodynamic modelling studies in the Underground Hydrogen Storage (UHS) domain. Geochemical modelling assessed the reactivity of hydrogen and res pective fluctuations in hydrogen losses using kinetic reaction rates rock mineralogy brine salinity and the integration of hydrogen redox reactions. Existing geomechanics studies offer an array of coupled hydromechanical models suggesting a decline in rock failure during the withdrawal phase in aquifers compared to injection phase. Hydrodynamic modelling evaluations indicate the critical importance of relative permeability hysteresis in determining the UHS performance. Solubility and diffusion of hydrogen gas appear to have minimal impact on UHS. Injection and production rates cushion gas deployment and reservoir heterogeneity however significantly affect the UHS performance stressing the need for thorough modelling and experimental studies. Most of the current UHS modelling efforts focus on assessing the hydrodynamic aspects which are crucial for understanding the viability and safety of UHS. In contrast the lesser-explored geochemical and geomechanical considerations point to potential research gaps. A variety of modelling software tools such as CMG Eclipse COMSOL and PHREEQC evaluated those UHS underlying effects along with a few recent applications of datadriven-based Machine Learning (ML) techniques for enhanced accuracy. This review identified several unresolved challenges in UHS modelling: pronounced lack of expansive datasets leading to a gap between model predictions and their practical reliability; need robust methodologies capable of capturing natural subsurface heterogeneity while upscaling from precise laboratory data to field-scale conditions; demanding intensive computational resources and novel strategies to enhance simulation efficiency; and a gap in addressing geological uncertainties in subsurface environments suggesting that methodologies from oil reservoir simulations could be adapted for UHS. This comprehensive review offers a critical synthesis of the prevailing approaches challenges and research gaps in the domain of UHS thus providing a valuable reference document for further modelling efforts facilitating the informed advancements in this critical domain towards the realization of sustainable energy solutions.
Techno-economic Feasibility of Distributed Waste-to-hydrogen Systems to Support Green Transport in Glasgow
Mar 2022
Publication
Distributed waste-to-hydrogen (WtH) systems are a potential solution to tackle the dual challenges of sustainable waste management and zero emission transport. Here we propose a concept of distributed WtH systems based on gasification and fermentation to support hydrogen fuel cell buses in Glasgow. A variety of WtH scenarios were configured based on biomass waste feedstock hydrogen production reactors and upstream and downstream system components. A cost-benefit analysis (CBA) was conducted to compare the economic feasibility of the different WtH systems with that of the conventional steam methane reforming-based method. This required the curation of a database that included inter alia direct cost data on construction maintenance operations infrastructure and storage along with indirect cost data comprising environmental impacts and externalities cost of pollution carbon taxes and subsidies. The levelized cost of hydrogen (LCoH) was calculated to be 2.22 GB P/kg for municipal solid waste gasification and 2.02 GB P/kg for waste wood gasification. The LCoHs for dark fermentation and combined dark and photo fermentation systems were calculated to be 2.15 GB P/kg and 2.29 GB P/kg. Sensitivity analysis was conducted to identify the most significant influential factors of distributed WtH systems. It was indicated that hydrogen production rates and CAPEX had the largest impact for the biochemical and thermochemical technologies respectively. Limitations including high capital expenditure will require cost reduction through technical advancements and carbon tax on conventional hydrogen production methods to improve the outlook for WtH development.
Deflagrations of Non-uniform Hydrogen/Air Clouds in a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces.<br/>Hydrogen vehicles typically have a Thermally activated Pressure Release Device (TPRD) providing protection to the on-board storage of the vehicle. Upon activation the content of the vessel is released in a blowdown. The release of this hydrogen gas poses a significant hazard of ignition. The consequences of such an ignition could also be compounded by confinement or congestion.<br/>HSE undertook a series of experiments investigating the consequences of these events by releasing hydrogen into a tunnel and causing ignitions. A sub-section of these tests involved steel structures providing congestion in the tunnel. The mass of hydrogen released into the tunnel prior to ignition was varied by storage pressure (up to 59 MPa) release diameter and ignition delay. The ignition delays were set based on the expected worst-case predicted by pre-simulation models. To assess the consequences overpressure measurements were made down the tunnel walls and for the tests with congestion at the face and rear of the congestion structures. The flame arrival time was also measured using exposed-tip thermocouples resulting in an estimate for flame speed down the tunnel. The measured overpressure and flame extent results are presented and compared against overpressure levels of concern.
Towards a Unified Theory of Domestic Hydrogen Acceptance: An Integrative, Comparative Review
Dec 2023
Publication
Hydrogen energy technologies are envisioned to play a critical supporting role in global decarbonisation. While low-carbon hydrogen is primarily targeted for reducing industrial emissions alongside decarbonising parts of the transport sector environmental benefits could also be achieved in the residential context. Presently gasdependent countries such as Japan and the United Kingdom are assessing the feasibility of deploying hydrogen home appliances as part of their national energy strategies. However prospects for the transition will hinge on consumer acceptance alongside an array of other socio-technical factors. To support potential ambitions for large-scale and sustained technology diffusion this study advances a Unified Theory of Domestic Hydrogen Acceptance. Through an integrative comparative literature review targeting hydrogen and domestic energy studies the paper proposes a novel Domestic Hydrogen Acceptance Model (DHAM) which accounts for the cognitive and emotional dimensions of human perceptions. Through this dual interplay the proposed framework can increase the predictive power of hydrogen acceptance models.
A Review of Liquid Hydrogen Aircraft and Propulsion Technologies
Jan 2024
Publication
Sustainable aviation is a key part of achieving Net Zero by 2050 and is arguably one of the most challenging sectors to decarbonise. Hydrogen has gained unprecedented attention as a future fuel for aviation for use within fuel cell or hydrogen gas turbine propulsion systems. This paper presents a survey of the literature and industrial projects on hydrogen aircraft and associated enabling technologies. The current and predicted technology capabilities are analysed to identify important trends and to assess the feasibility of hydrogen propulsion. Several key enabling technologies are discussed in detail and gaps in knowledge are identified. It is evident that hydrogen propelled aircraft are technologically viable by 2050. However convergence of a number of critical factors is required namely: the extent of industrial collaboration the understanding of environmental science and contrails green hydrogen production and its availability at the point of use and the safety and certification of the aircraft and supporting infrastructure.
Numerical Simulation of Pressure Recovery Phenomenon in Liquid Ammonia Tank
Sep 2023
Publication
A phase transition develops when a pressurised ammonia vessel is vented through a relieve valve or as a result of shell cracking. Significant pressure recovery in the vessel can occur as a consequence of this phase transition following initial depressurisation and may lead to complete vessel failure. It is critical for safety engineering to predict the flash boiling behaviour and pressure dynamics during the depressurization of liquid ammonia tank. This research aims to develop and compare against available experimental data a CFD model that can predict two-phase behaviour of ammonia and resulting pressure dynamics in the storage tank during its venting to the atmosphere. The CFD model is based on the Volume-of-Fluid (VOF) method and Lee evaporation/condensation approach. The numerical simulation demonstrated that liquid ammonia which is initially at equilibrium state begins to boil throughout due to the decrease of its saturation temperature with the pressure drop during tank venting. In order to understand phenomena underlying the pressure recovery this paper analyses dynamics of superheated ammonia formation its swelling vaporisation contribution to gaseous ammonia mass and volume in ullage space and gaseous ammonia venting. Performed in the study quantitative analysis demonstrated that the flash boiling and gaseous ammonia produced by this phase change were the major reasons behind the pressure recovery. The simulation results of flash boiling delay accurately matched the analytical calculation of bubble rise time. The developed CFD model can be used as a contemporary tool for inherently safer design of ammonia tanks and their depressurisation process.
Explaining Varying Speeds of Low-carbon Reorientation in the United Kingdom's Steel, Petrochemical, and Oil Refining Industries: A Multi-dimensional Comparative Analysis and Outlook
Feb 2024
Publication
Accelerated decarbonisation of steelmaking oil refining and petrochemical industries is essential for climate change mitigation. Drawing on three longitudinal case studies of these industries in the UK this synthesis article makes a comparative analysis of their varying low-carbon reorientation speeds. The paper uses the triple embeddedness framework to analyse five factors (policy support international competition financial health technical feasibility corporate strategy and mindset) that explain why UK oil refineries have in recent years been comparatively the fastest in their low-carbon reorientation and UK steelmakers the slowest. We find that policy support has been more beneficial for refining and petrochemicals than for steel although recent government deals with steelmakers addressed this imbalance. International competition has been high for steel and petrochemicals and comparatively lower for refining (meaning that decarbonisation costs are less detrimental for international competitiveness). Financial performance has comparatively been worst for steel and best for oil refining which shapes the economic feasibility of low-carbon options. Hydrogen and carbon-capture-and-storage are technologically feasible for refining and petrochemicals while Electric Arc Furnaces are technically feasible for steelmakers but face wider feasibility problems (with scrap steel supply electricity grids and electricity prices) which is why we question the recent government deals. Corporate strategy and perceptions changed in oil refining with firms seeing economic opportunities in decarbonisation while steelmakers and petrochemical firms still mostly see decarbonisation as a burden and threat. The paper ends with comparative conclusions a discussion of political considerations and future outlooks for the three UK industries policy and research.
Hydrogen Dispersion Following Blowdown Releases into a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. The test programme investigating hydrogen dispersion in tunnels involved simulating releases analogous to Thermally activated Pressure Relief Devices (TPRDs) typically found on hydrogen vehicles into the HSE Tunnel facility. The releases were scaled and based upon four scenarios: cars buses and two different train designs. The basis for this scaling was the size of the tunnel and the expected initial mass flow rates of the releases scenarios. The results of the 12 tests completed have been analysed in two ways: the initial mass flow rates of the tests were calculated based upon facility measurements and the Able-Noble equations of state for comparison to the intended initial flow rate; and observations of the hydrogen dispersion in the tunnel were made based on 15 hydrogen sensors arrayed along the tunnel. The calculated mass flow rates showed reasonable agreement with the intended initial conditions showing that the scaling methodology can be used to interpret the data based on the full-scale tunnel of interest. Observations of the hydrogen dispersion show an initial turbulent mixing followed by a movement of the mixed hydrogen/air cloud down the tunnel. No vertical stratification of the cloud was observed but this effect could be possible in longer tunnels or tunnels with larger diameters. Higher ventilation rates in the tunnel resulted in a reduction of the residence time of the hydrogen and a slight increase in the dilution.
The Global Shift to Hydrogen and Lessons from Outside Industry
Sep 2023
Publication
The recognition of hydrogen as a technically viable combustion fuel and as an alternative to more carbon intensive technologies for all forms of industrial applications has resulted in significant global interest leading to both public and private investment. As with most shifts in technology public acceptance and its safe production and handling will be key to its growth as a widespread energy vector. Specific properties of hydrogen that may prompt concern from the public and that need to be considered in terms of its use and safe handling include the following:<br/>• Hydrogen in its natural state is a colourless odourless and tasteless gas that is combustible with very low ignition energy burns nearly invisibly and is explosive at a very wide range of concentrations with an oxidate.<br/>• Hydrogen as any other gas except oxygen is an asphyxiant in a confined space.<br/>• Hydrogen is an extremely small molecule and interacts with many materials which over time can alter the physical properties and can lead to embrittlement and failure. Additionally due to the small molecular size its permeation and diffusion characteristics make it more difficult to contain compared to other gases.<br/>As hydrogen production use and storage increases these properties will come under greater scrutiny and may raise questions surrounding the cost/benefit of the technology. Understanding how the public sees this technology in relation to their safety and daily lives is important in hydrogen’s adoption as a low carbon alternative. A review of deployable experience relevant to the handling of hydrogen in other industries will help us to understand the technology and experience necessary for ensuring the success of the scaling up of a hydrogen economy. The social considerations of the impacts should also be examined to consider acceptance of the technology as it moves into the mainstream.
Coupling Green Hydrogen Production to Community Benefits: A Pathway to Social Acceptance?
Feb 2024
Publication
Hydrogen energy technologies are forecasted to play a critical supporting role in global decarbonisation efforts as reflected by the growth of national hydrogen energy strategies in recent years. Notably the UK government published its Hydrogen Strategy in August 2021 to support decarbonisation targets and energy security ambitions. While establishing techno-economic feasibility for hydrogen energy systems is a prerequisite of the prospective transition social acceptability is also needed to support visions for the ‘hydrogen economy’. However to date societal factors are yet to be embedded into policy prescriptions. Securing social acceptance is especially critical in the context of ‘hydrogen homes’ which entails replacing natural gas boilers and hobs with low-carbon hydrogen appliances. Reflecting the nascency of hydrogen heating and cooking technologies the dynamics of social acceptance are yet to be explored in a comprehensive way. Similarly public perceptions of the hydrogen economy and emerging national strategies remain poorly understood. Given the paucity of conceptual and empirical insights this study develops an integrated acceptance framework and tests its predictive power using partial least squares structural equation modelling. Results highlight the importance of risk perceptions trust dynamics and emotions in shaping consumer perceptions. Foremost prospects for deploying hydrogen homes at scale may rest with coupling renewable-based hydrogen production to local environmental and socio-economic benefits. Policy prescriptions should embed societal factors into the technological pursuit of large-scale sustainable energy solutions to support socially acceptable transition pathways.
Life Cycle Assessment of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Aug 2023
Publication
In recent years there has been a significant increase in the adoption of autonomous vehicles for marine and submarine missions. The advancement of emerging imaging navigation and communication technologies has greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a European research endeavor focused on identifying strategies for achieving minimal environmental impact. To measure these facts this article evaluates the product impacts employing the Life Cycle Assessment methodology for the first time following the ISO 14040 standard. In this analysis the quantitative values of Damage and Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results report that the main contributors in environmental impact terms have been placed during the manufacturing phase. Thus one of the challenges is accomplished avoiding the use phase emissions that are the focus to reduce nowadays in the marine industry.
Hydrogen Fuel Quality from Two Main Production Processes: Steam Methane Reforming and Proton Exchange Membrane Water Electrolysis
Oct 2019
Publication
Thomas Bacquart,
Karine Arrhenius,
Stefan Persijn,
Andrés Rojo,
Fabien Auprêtre,
Bruno Gozlan,
Abigail Morris,
Andreas Fischer,
Arul Murugan,
Sam Bartlett,
Niamh Moore,
Guillaume Doucet,
François Laridant,
Eric Gernot,
Teresa E. Fernandez,
Concepcion Gomez,
Martine Carré,
Guy De Reals and
Frédérique Haloua
The absence of contaminants in the hydrogen delivered at the hydrogen refuelling station is critical to ensure the length life of FCEV. Hydrogen quality has to be ensured according to the two international standards ISO 14687–2:2012 and ISO/DIS 19880-8. Amount fraction of contaminants from the two hydrogen production processes steam methane reforming and PEM water electrolyser is not clearly documented. Twenty five different hydrogen samples were taken and analysed for all contaminants listed in ISO 14687-2. The first results of hydrogen quality from production processes: PEM water electrolysis with TSA and SMR with PSA are presented. The results on more than 16 different plants or occasions demonstrated that in all cases the 13 compounds listed in ISO 14687 were below the threshold of the international standards. Several contaminated hydrogen samples demonstrated the needs for validated and standardised sampling system and procedure. The results validated the probability of contaminants presence proposed in ISO/DIS 19880-8. It will support the implementation of ISO/ DIS 19880-8 and the development of hydrogen quality control monitoring plan. It is recommended to extend the study to other production method (i.e. alkaline electrolysis) the HRS supply chain (i.e. compressor) to support the technology growth.
Purging Hydrogen Distribution Pipelines: Literature Review, Description of Recent Experiments and Proposed Future Work
Sep 2023
Publication
The aim of the H21 project is to undertake measurements analysis and field trials to support the safe repurposing of Great Britain’s natural gas distribution network for hydrogen. As part of this project work has been ongoing to identify aspects of existing natural gas procedures that will need to be modified for hydrogen and to support the development of new procedures. This has included a review of the scientific basis of current displacement purging practices analysis of the potential implications of switching from natural gas to hydrogen and experimental support work. The reduced density and viscosity of hydrogen means that minimum purging velocities should (in principle) be higher for hydrogen to avoid stratification and ensure adequate removal of the purged gas during pipeline purging operations. A complicating factor is the high molecular diffusivity of hydrogen (roughly three times that of natural gas) which causes hydrogen to mix over short distances more rapidly than natural gas. Current models for pipeline purging do not take into account the mixing effect related to molecular diffusion. The wider flammable limits lower ignition energy and greater potential for combustion to transition from deflagration to detonation with hydrogen means that indirect purging with nitrogen is currently being investigated for distribution pipelines. This paper reviews the ongoing analysis of hydrogen pipeline purging and discusses a potential future scientific programme of work aimed at developing a new pipeline purging model that accounts for molecular diffusion effects.
Feasibility Study into Water Requirement for Hydrogen Production
Nov 2022
Publication
Low carbon hydrogen can be produced by a variety of processes that require substantial quantities of water. Several major hydrogen projects are proposed in Scotland; as an energy storage medium allowing new renewable power capacity to operate and as a direct alternative to displace natural gas as a primary fuel source. The additional water consumption associated with these hydrogen projects presents an infrastructure challenge.
The aims of the study are to evaluate the water requirements of new hydrogen production facilities and the associated implications for water infrastructure and to develop a strategic framework for assessing these aspects of hydrogen projects throughout the UK. The initial focus of the study is on Scotland; however the methodology developed in the project will be used throughout the UK
Benefits
Low carbon hydrogen can be produced by a variety of processes all of which require substantial quantities of water. Several major hydrogen projects are proposed in Scotland; both as an energy storage medium allowing new renewable power capacity (particularly wind) to operate and as a direct alternative to displace natural gas as a primary fuel source. The additional water consumption associated with these hydrogen projects presents an infrastructure challenge e.g. the Scottish Environment Protection Agency (SEPA) recently highlighted Scotland’s vulnerability to dry weather and climate-induced changes in the availability and functioning of water resources.
The project in partnership with Ramboll will look to deliver a technical assessment and feasibility study into water requirements for hydrogen production in Scotland. The aims of the study are to evaluate the water requirements of new hydrogen production facilities and the associated implications for water infrastructure and to develop a strategic framework for assessing these aspects of hydrogen projects throughout the UK. The initial focus of the study is on Scotland; however the methodology developed in the project will be used throughout the UK.
The research paper can be found on their website.
The aims of the study are to evaluate the water requirements of new hydrogen production facilities and the associated implications for water infrastructure and to develop a strategic framework for assessing these aspects of hydrogen projects throughout the UK. The initial focus of the study is on Scotland; however the methodology developed in the project will be used throughout the UK
Benefits
Low carbon hydrogen can be produced by a variety of processes all of which require substantial quantities of water. Several major hydrogen projects are proposed in Scotland; both as an energy storage medium allowing new renewable power capacity (particularly wind) to operate and as a direct alternative to displace natural gas as a primary fuel source. The additional water consumption associated with these hydrogen projects presents an infrastructure challenge e.g. the Scottish Environment Protection Agency (SEPA) recently highlighted Scotland’s vulnerability to dry weather and climate-induced changes in the availability and functioning of water resources.
The project in partnership with Ramboll will look to deliver a technical assessment and feasibility study into water requirements for hydrogen production in Scotland. The aims of the study are to evaluate the water requirements of new hydrogen production facilities and the associated implications for water infrastructure and to develop a strategic framework for assessing these aspects of hydrogen projects throughout the UK. The initial focus of the study is on Scotland; however the methodology developed in the project will be used throughout the UK.
The research paper can be found on their website.
Economic Performance Evaluation of Flexible Centralised and Decentralised Blue Hydrogen Production Systems Design Under Uncertainty
Sep 2023
Publication
Blue hydrogen is viewed as an important energy vector in a decarbonised global economy but its large-scale and capital-intensive production displays economic performance vulnerabities in the face of increased market and regulatory uncertainty. This study analyses flexible (modular) blue hydrogen production plant designs and evaluates their effectiveness to enhance economic performance under uncertainty. The novelty of this work lies in the development of a comprehensive techno-economic evaluation framework that considers flexible centralised and decentralised blue hydrogen plant design alternatives in the presence of irreducible uncertainty whilst explicitly considering the time value of money economies of scale and learning effects. A case study of centralised and decentralised blue hydrogen production for the transport sector in the San Francisco area is developed to highlight the underlying value of flexibility. The proposed methodological framework considers various blue hydrogen plant designs (fixed phased and flexible) and compares them using relevant economic indicators (net present value (NPV) capex value-at-risk/gain etc.) through a detailed Monte Carlo simulation framework. Results indicate that flexible centralised hydrogen production yields greater economic value than alternative designs despite the associated cost-premium of modularity. It is also shown that the value of flexibility increases under greater uncertainty higher learning rates and weaker economies of scale. Moreover sensitivity analysis reveals that flexible design remains the preferred investment option over a wide range of market and regulatory conditions except for high initial hydrogen demand. Finally this study demonstrates that major regulatory and market uncertainties surrounding blue hydrogen production can be effectively managed through the application of flexible engineering system design that protects the investment from major downside risks whilst allowing access to favourable upside opportunities.
No more items...