United Kingdom
Engineering Models for Refueling Protocol Development: Validation and Recommendations
Sep 2023
Publication
Fouad Ammouri,
Nicola Benvenuti,
Elena Vyazmina,
Vincent Ren,
Guillaume Lodier,
Quentin Nouvelot,
Thomas Guewouo,
Dorine Crouslé,
Rony Tawk,
Nicholas Hart,
Steve Mathison,
Taichi Kuroki,
Spencer Quong,
Antonio Ruiz,
Alexander Grab,
Alexander Kvasnicka,
Benoit Poulet,
Christopher Kutz and
Martin Zerta
The PRHYDE project (PRotocol for heavy duty HYDrogEn refueling) funded by the Clean Hydrogen partnership aims at developing recommendations for heavy-duty refueling protocols used for future standardization activities for trucks and other heavy duty transport systems applying hydrogen technologies. Development of a protocol requires a validated approach. Due to the limited time and budget the experimental data cannot cover the whole possible ranges of protocol parameters such as initial vehicle pressure and temperature ambient and precooling temperatures pressure ramp refueling time hardware specifications etc. Hence a validated numerical tool is essential for a safe and efficient protocol development. For this purpose engineering tools are used. They give good results in a very reasonable computation time of several seconds or minutes. These tools provide the heat parameters estimation in the gas (volume average temperature) and 1D temperature distribution in the tank wall. The following models were used SOFIL (Air Liquide tool) HyFill (by ENGIE) and H2Fills (open access code by NREL). The comparison of modelling results and experimental data demonstrated a good capability of codes to predict the evolution of average gas temperature in function of time. Some recommendations on model validation for the future protocol development are given.
Integration of Underground Green Hydrogen Storage in Hybrid Energy Generation
May 2024
Publication
One of the major challenges in harnessing energy from renewable sources like wind and solar is their intermittent nature. Energy production from these sources can vary based on weather conditions and time of day making it essential to store surplus energy for later use when there is a shortfall. Energy storage systems play a crucial role in addressing this intermittency issue and ensuring a stable and reliable energy supply. Green hydrogen sourced from renewables emerges as a promising solution to meet the rising demand for sustainable energy addressing the depletion of fossil fuels and environmental crises. In the present study underground hydrogen storage in various geological formations (aquifers depleted hydrocarbon reservoirs salt caverns) is examined emphasizing the need for a detailed geological analysis and addressing potential hazards. The paper discusses challenges associated with underground hydrogen storage including the requirement for extensive studies to understand hydrogen interactions with microorganisms. It underscores the importance of the issue with a focus on reviewing the the various past and present hydrogen storage projects and sites as well as reviewing the modeling studies in this field. The paper also emphasizes the importance of incorporating hybrid energy systems into hydrogen storage to overcome limitations associated with standalone hydrogen storage systems. It further explores the past and future integrations of underground storage of green hydrogen within this dynamic energy landscape.
A Systems-Level Study of Ammonia and Hydrogen for Maritime Transport
Aug 2023
Publication
An energy systems comparison of grid-electricity derived liquid hydrogen (LH2) and liquid ammonia (LNH3) is conducted to assess their relative potential in a low-carbon future. Under various voyage weather conditions their performance is analysed for use in cargo transport energy vectors for low-carbon electricity transport and fuel supply. The analysis relies on literature projections for technological development and grid decarbonisation towards 2050. Various voyages are investigated from regions such as North America (NA) Europe (E) and Latin America (LA) to regions projected to have a higher electricity and fuel grid carbon intensity (CI) (i.e. Asia Pacific Africa the Middle-East and the CIS). In terms of reducing the CI of electricity and fuel at the destination port use of LH2 is predicted to be favourable relative to LNH3 whereas LNH3 is favourable for low-carbon transport of cargo. As targeted by the International Maritime Organisation journeys of LNH3 cargo ships originating in NA E and LA achieve a reduction in volumetric energy efficiency design index (kg-CO2/m3 -km) of at least 70% relative to 2008 levels. The same targets can be met globally if LH2 is supplied to high CI regions for production of LNH3 for cargo transport. A future shipping system thus benefits from the use of both LH2 and LNH3 for different functions. However there are additional challenges associated with the use of LH2. Relative to LNH3 1.6 to 1.7 times the number of LH2 ships are required to deliver the same energy. Even when reliquefaction is employed their success is reliant on the avoidance of rough sea states (i.e. Beaufort Numbers >= 6) where fuel depletion rates during a voyage are impractical.
Factors Driving the Decarbonisation of Industrial Clusters: A Rapid Evidence Assessment of International Experience
Sep 2023
Publication
Reducing industrial emissions to achieve net-zero targets by the middle of the century will require profound and sustained changes to how energy intensive industries operate. Preliminary activity is now underway with governments of several developed economies starting to implement policy and providing funding to support the deployment of low carbon infrastructure into high emitting industrial clusters. While clusters appear to offer the economies of scale and institutional capacity needed to kick-start the industrial transition to date there has been little systematic assessment of the factors that may influence the success of these initiatives. Drawing from academic and grey literature this paper presents a rapid evidence assessment of the approaches being used to drive the development of low carbon industrial clusters internationally. Many projects are still at the scoping stage but it is apparent that current initiatives focus on the deployment of carbon capture technologies alongside hydrogen as a future secondary revenue stream. This model of decarbonisation funnels investment into large coastal clusters with access to low carbon electricity and tends to obscure questions about the integration of these technologies with other decarbonisation interventions such as material efficiency and electrification. The technology focus also omits the importance that a favourable location and shared history and culture appears to have played in helping progress the most advanced initiatives; factors that cannot be easily replicated elsewhere. If clusters are to kick-start the low-carbon industrial transition then greater attention is needed to the social and political dimensions of this process and to a broader range of decarbonisation interventions and cluster types than represented by current projects.
Mitigating Risks in Hydrogen-powered Transportation: A Comprehensive Risk Assessment for Hydrogen Refuelling Stations, Vehicles, and Garages
Oct 2024
Publication
Hydrogen is increasingly seen as a viable alternative to fossil fuels in transportation crucial to achieving net-zero energy goals. However the rapid expansion of hydrogen-powered transportation is outpacing safety standards posing significant risks due to limited operational experience involvement of new actors and lack of targeted guidelines. This study addresses the urgent need for a tailored comprehensive risk assessment framework. Using Structured What-If (SWIFT) and bowtie barrier analysis the research evaluates a hypothetical pilot project focusing on hydrogen refuelling stations vehicles and garages. The study identifies critical hazards and assesses the adequacy of current risk mitigation measures. Key findings reveal gaps in safety practices leading to 41 actionable steps and 5 key activities to help new actors manage hydrogen risks effectively. By introducing novel safety guidelines this research contributes to the development of safe hydrogen use and advances the understanding of hydrogen risks ensuring its sustainable integration into transportation systems.
Numerical Simulations of the Critical Diameter and Flame Stability for the Hydrogen Jet Flames
Sep 2023
Publication
This study focuses on development of a CFD model able to simulate the experimentally observed critical nozzle diameter for hydrogen non-premixed flames. The critical diameter represents the minimum nozzle size through which a free jet flame will remain stable at all driving pressures. Hydrogen non-premixed flames will not blow-out at diameters equal to or greater than the critical diameter. Accurate simulation of this parameter is important for assessment of thermally activated pressure relief device (TPRD) performance during hydrogen blowdown from a storage tank. At TPRD diameters below the critical value there is potential for a hydrogen jet flame to blow-out as the storage tank vents potentially leading to hydrogen accumulation in an indoor release scenario. Previous experimental studies have indicated that the critical diameter for hydrogen is approximately 1 mm. In this study flame stability is considered across a range of diameters and overpressures from 0.1 mm to 2 mm and from 0.2 MPa to 20 MPa respectively. The impact of turbulent Schmidt number Sct which is the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity on the hydrogen concentration profile in the region near the nozzle exit and subsequent influence on critical diameter was investigated and discussed. For lower Sct values the enhanced mass mixing resulted in smaller predicted critical diameters. The use of value Sct=0.61 in the model demonstrated the best agreement with experimental values of the critical diameter. The model reproduced the critical diameter of 1 mm and then was applied to predict flame stability for under-expanded hydrogen jets.
Hopes and Fears for a Sustainable Energy Future: Enter the Hydrogen Acceptance Matrix
Feb 2024
Publication
Hydrogen-fuelled technologies for home heating and cooking may provide a low-carbon solution for decarbonising parts of the global housing stock. For the transition to transpire the attitudes and perceptions of consumers must be factored into policy making efforts. However empirical studies are yet to explore potential levels of consumer heterogeneity regarding domestic hydrogen acceptance. In response this study explores a wide spectrum of consumer responses towards the prospect of hydrogen homes. The proposed spectrum is conceptualised in terms of the ‘domestic hydrogen acceptance matrix’ which is examined through a nationally representative online survey conducted in the United Kingdom. The results draw attention to the importance of interest and engagement in environmental issues knowledge and awareness of renewable energy technologies and early adoption potential as key drivers of domestic hydrogen acceptance. Critically strategic measures should be taken to convert hydrogen scepticism and pessimism into hope and optimism by recognising the multidimensional nature of consumer acceptance. To this end resources should be dedicated towards increasing the observability and trialability of hydrogen homes in proximity to industrial clusters and hubs where the stakes for consumer acceptance are highest. Progress towards realising a net-zero society can be supported by early stakeholder engagement with the domestic hydrogen acceptance matrix.
Nuclear Enabled Hydrogen CO-generation: Safety and Regulatory Insight
Sep 2023
Publication
National Nuclear Laboratory (NNL) is aiming to demonstrate through a research and development programme that nuclear enabled hydrogen can be used to support future clean energy systems. Demonstrating the safe operation of hydrogen facilities co-generating with a nuclear reactor will be key to enabling the deployment and success of nuclear enabled hydrogen technologies in the future. During the deployment continuity of supply will be paramount and possibly requires inter-seasonal storage. Co-generation is a means of using a source of energy in this case a nuclear reactor to efficiently produce power and thermal energy. Since a great deal of the heat energy is lost to the environment in a power plant making use of wasted energy for other useful output like the production of hydrogen and direct heating would be advantageous to plant economics and energy system flexibility. The civil nuclear industry is regulated around the world. This approach ensures that all the activities related to the production of power from nuclear and the hazards associated with ionising radiation are controlled in a manner which protects workers members of the public property and the environment. Nuclear safety assessments follow a rigorous process and are required as part of the Nuclear Site Licence. A fundamental requirement which is cited in the UK legislation is that the risks associated with all activities at the licensed site be reduced to As Low As Reasonably Practicable (ALARP). The principle places a requirement on duty holders to implement measures to reduce risk where doing so is considered reasonable and proportionate. The inclusion of risks for hazardous materials associated with the hydrogen production facilities need to be considered and this requires harmonisation of two different safety and regulatory governance regimes which have not previously interacted in this way. The safety demonstration for nuclear facilities is provided through the Safety Case.
An Overview of Application-orientated Multifunctional Large-scale Stationary Battery and Hydrogen Hybrid Energy Storage System
Dec 2023
Publication
The imperative to address traditional energy crises and environmental concerns has accelerated the need for energy structure transformation. However the variable nature of renewable energy poses challenges in meeting complex practical energy requirements. To address this issue the construction of a multifunctional large-scale stationary energy storage system is considered an effective solution. This paper critically examines the battery and hydrogen hybrid energy storage systems. Both technologies face limitations hindering them from fully meeting future energy storage needs such as large storage capacity in limited space frequent storage with rapid response and continuous storage without loss. Batteries with their rapid response (90%) excel in frequent short-duration energy storage. However limitations such as a selfdischarge rate (>1%) and capacity loss (~20%) restrict their use for long-duration energy storage. Hydrogen as a potential energy carrier is suitable for large-scale long-duration energy storage due to its high energy density steady state and low loss. Nevertheless it is less efficient for frequent energy storage due to its low storage efficiency (~50%). Ongoing research suggests that a battery and hydrogen hybrid energy storage system could combine the strengths of both technologies to meet the growing demand for large-scale long-duration energy storage. To assess their applied potentials this paper provides a detailed analysis of the research status of both energy storage technologies using proposed key performance indices. Additionally application-oriented future directions and challenges of the battery and hydrogen hybrid energy storage system are outlined from multiple perspectives offering guidance for the development of advanced energy storage systems.
A Comprehensive Review on Liquid Hydrogen Transfer Operations and Safety Considerations for Mobile Applications
Dec 2024
Publication
The adoption of liquid hydrogen (LH2) as an energy carrier presents significant opportunities for distributing large quantities of hydrogen efficiently. However ensuring safety of LH2 transfer operations requires the evo lution of suitable technologies and regulatory framework. This study offers an extensive overview of technical considerations and safety aspects pertaining to liquid hydrogen installations and mobile applications. A signif icant lack of regulations specifically tailored for LH2 transfer operations is highlighted. Additionally experi mental findings and outcomes of the modelling activities carried out in previous research are presented shedding light on the combustion and ignition behaviour of liquid hydrogen during accident scenarios. The identification of research gaps and ongoing research projects underscores the importance of continued investigation and development of this critical area.
Assessing the Viability of Renewable Hydrogen, Ammonia, and Methanol in Decarbonizing Heavy-duty Trucks
Jan 2025
Publication
Decarbonizing heavy-duty trucks (HDTs) is both challenging and crucial for achieving carbon neutrality in the transport sector. Renewable hydrogen (H2) methanol (MeOH) and ammonia (NH3) offer potential solutions yet their economic viability and emission benefits remain largely unexplored. This study presents for the first time a comprehensive techno-economic analysis of using these three renewable fuels to decarbonize HDTs through detailed fuel and vehicle modeling. Six pathways are compared: hydrogen fuel cell electric trucks (FCET-H2) internal combustion engine trucks using MeOH (ICET-MeOH) and NH3 (ICET-NH3) as well as three indirect pathways that utilize these fuels for power generation to charge battery electric trucks (BETs). A novel “target powertrain cost” metric is introduced to assess the economic viability of FCET-H2 ICET-NH3 and ICET-MeOH relative to BETs. The results reveal that while BET pathways demonstrate higher well-to-wheel efficiencies significant opportunities exist for ICET-MeOH and ICET-NH3 in medium- and long-haul applications. Further more FCET-H2 achieves the lowest life cycle carbon emissions while ICET-MeOH and ICET-NH3 become more cost-effective as electricity costs decline. This study offers valuable insights and benchmarks for powertrain developers and policymakers addressing a critical gap in the comparative analysis of these three fuels for decarbonizing HDTs.
The Economical Repurposing Pipeliness to Hydrogen - Why Performance Testing of Representative Line Pipes is Key?
Sep 2023
Publication
The introduction of hydrogen in natural gas pipeline systems introduces integrity challenges due to the nature of interactions between hydrogen and line pipe steel materials. However not every natural gas pipeline is equal in regards to the challenges potentially posed by the repurposing to hydrogen. Existing codes and practices penalise high-grade materials on the basis of a perceived higher susceptibility to hydrogen embrittlement in regards to their increased strength. This philosophy challenges the realisation of a hydrogen economy because it puts at economical and technical risk the conversion of almost half of the natural gas transmission systems in western countries.
The paper addresses the question whether pipe grade is actually a good proxy to strength and predictor to assess the performance of steel line pipes in hydrogen. Drivers that could affect the suitability of pipeline conversion in hydrogen from an integrity management perspective and industry experience of other hydrogen-charging applications are reviewed. In doing so the paper challenges the basis of the assumption that low-grade steels (up to X52 / L360) are automatically safer for hydrogen repurposing while at the other end of the spectrum higher-grade materials (>X52 / L360) are inevitably less suitable for hydrogen service.
Ultimately the paper discusses that materials sampling and testing of representative line pipes populations should be placed at the core of hydrogen repurposing strategies in order to safely address conversion and to maximize the hydrogen chain value. The paper addresses alternatives to make the sampling smart and cost-effective.
The paper addresses the question whether pipe grade is actually a good proxy to strength and predictor to assess the performance of steel line pipes in hydrogen. Drivers that could affect the suitability of pipeline conversion in hydrogen from an integrity management perspective and industry experience of other hydrogen-charging applications are reviewed. In doing so the paper challenges the basis of the assumption that low-grade steels (up to X52 / L360) are automatically safer for hydrogen repurposing while at the other end of the spectrum higher-grade materials (>X52 / L360) are inevitably less suitable for hydrogen service.
Ultimately the paper discusses that materials sampling and testing of representative line pipes populations should be placed at the core of hydrogen repurposing strategies in order to safely address conversion and to maximize the hydrogen chain value. The paper addresses alternatives to make the sampling smart and cost-effective.
Review of the Status and Prospects of Fiber Optic Hydrogen Sensing Technology
Aug 2023
Publication
With the unprecedented development of green and renewable energy sources the proportion of clean hydrogen (H2 ) applications grows rapidly. Since H2 has physicochemical properties of being highly permeable and combustible high-performance H2 sensors to detect and monitor hydrogen concentration are essential. This review discusses a variety of fiber-optic-based H2 sensor technologies since the year 1984 including: interferometer technology fiber grating technology surface plasma resonance (SPR) technology micro lens technology evanescent field technology integrated optical waveguide technology direct transmission/reflection detection technology etc. These technologies have been evolving from simply pursuing high sensitivity and low detection limits (LDL) to focusing on multiple performance parameters to match various application demands such as: high temperature resistance fast response speed fast recovery speed large concentration range low cross sensitivity excellent long-term stability etc. On the basis of palladium (Pd)-sensitive material alloy metals catalysts or nanoparticles are proposed to improve the performance of fiberoptic-based H2 sensors including gold (Au) silver (Ag) platinum (Pt) zinc oxide (ZnO) titanium oxide (TiO2 ) tungsten oxide (WO3 ) Mg70Ti30 polydimethylsiloxane (PDMS) graphene oxide (GO) etc. Various microstructure processes of the side and end of optical fiber H2 sensors are also discussed in this review.
Divergent Consumer Preferences and Visions for Cooking and Heating Technologies in the United Kingdom: Make Our Homes Clean, Safe, Warm and Smart!
Aug 2023
Publication
Decarbonising the global housing stock is imperative for reaching climate change targets. In the United Kingdom hydrogen is currently being tested as a replacement fuel for natural gas which could be used to supply low-carbon energy to parts of the country. Transitioning the residential sector towards a net-zero future will call for an inclusive understanding of consumer preferences for emerging technologies. In response this paper explores consumer attitudes towards domestic cooking and heating technologies and energy appliances of the future which could include a role for hydrogen hobs and boilers in UK homes. To access qualitative evidence on this topic we conducted ten online focus groups (N = 58) with members of the UK public between February and April 2022. The study finds that existing gas users wish to preserve the best features of gas cooking such as speed responsiveness and controllability but also desire the potential safety and aesthetic benefits of electric systems principally induction hobs. Meanwhile future heating systems should ensure thermal comfort ease of use energy efficiency and smart performance while providing space savings and noise reduction alongside demonstrable green benefits. Mixed-methods multigroup analysis suggests divergence between support levels for hydrogen homes which implies a degree of consumer heterogeneity. Foremost we find that domestic hydrogen acceptance is positively associated with interest and engagement with renewable energy and fuel poverty pressures. We conclude that internalising the perspectives of consumers is critical to enabling constructive socio-technical imaginaries for low-carbon domestic energy futures.
Design of Gravimetric Primary Standards for Field-testing of Hydrogen Refuelling Stations
Apr 2020
Publication
The Federal Institute of Metrology METAS developed a Hydrogen Field Test Standard (HFTS) that can be used for field verification and calibration of hydrogen refuelling stations. The testing method is based on the gravimetric principle. The experimental design of the HFTS as well as the description of the method are presented here.
Life-Cycle and Applicational Analysis of Hydrogen Production and Powered Inland Marine Vessels
Aug 2023
Publication
Green energy is at the forefront of current policy research and engineering but some of the potential fuels require either a lot of deeper research or a lot of infrastructure before they can be implemented. In the case of hydrogen both are true. This report aims to analyse the potential of hydrogen as a future fuel source by performing a life-cycle assessment. Through this the well-to-tank phase of fuel production and the usage phase of the system have been analysed. Models have also been created for traditional fuel systems to best compare results. The results show that hydrogen has great potential to convert marine transport to operating off green fuels when powered through low-carbon energy sources which could reduce a huge percentage of the international community’s greenhouse gas emissions. Hydrogen produced through wind powered alkaline electrolysis produced emission data 5.25 g of CO2 equivalent per MJ compared to the 210 g per MJ produced by a medium efficiency diesel equivalent system a result 40 times larger. However with current infrastructure in most countries not utilising a great amount of green energy production the effects of hydrogen usage could be more dangerous than current fuel sources owing to the incredible energy requirements of hydrogen production with even grid (UK) powered electrolysis producing an emission level of 284 g per MJ which is an increase against standard diesel systems. From this the research concludes that without global infrastructure change hydrogen will remain as a potential fuel rather than a common one.
Pressure Decline and Gas Expansion in Underground Hydrogen Storage: A Pore-scale Percolation Study
Aug 2024
Publication
Using high-resolution micro-CT imaging at 2.98 μm/voxel we compared the percolation of hydrogen in gas injection with gas expansion for a hydrogen-brine system in Bentheimer sandstone at 1 MPa and 20 ◦C representing hydrogen storage in an aquifer. We introduced dimensionless numbers to quantify the contribution of advection and expansion to displacement. We analysed the 3D spatial distribution of gas and its displacement in both cases and demonstrated that in gas injection hydrogen can only advance from a connected cluster in an invasion-percolation type process while in gas expansion hydrogen can access more of the pore space even from disconnected clusters. The average gas saturation in the sample increased from 30% to 50% by gas expansion and we estimated that 10% of the expanded volume is attributed to hydrogen exsolution from the brine. This work emphasises the importance of studying the combined effects of pressure decline and gas withdrawal in hydrogen storage to assess the influence of gas expansion on remobilising trapped gases.
Energy Efficiency of Hydrogen for Vehicle Propulsion: On- or Off-board H2 to Electricity Conversion?
Nov 2024
Publication
If hydrogen fuel is available to support the transportation sector decarbonization its usage can be placed either directly onboard in a fuel cell vehicle or indirectly off-board by using a fuel cell power station to produce electricity to charge a battery electric vehicle. Therefore in this work the direct and indirect conversion scenarios of hydrogen to vehicle propulsion were investigated regarding energy efficiency. Thus in the first scenario hydrogen is the fuel for the onboard electricity production to propel a fuel cell vehicle while in the second hydrogen is the electricity source to charge the battery electric vehicle. When simulated for a drive cycle results have shown that the scenario with the onboard fuel cell consumed about 20% less hydrogen demonstrating higher energy efficiency in terms of driving range. However energy efficiency depends on the outside temperature when heat loss utilization is considered. For outside temperatures of − 5 ◦C or higher the system composed of the battery electric vehicle fueled with electricity from the off-board fuel cell was shown to be more energyefficient. For lower temperatures the system composed of the onboard fuel cell again presented higher total (heat + electricity) efficiency. Therefore the results provide valuable insights into how hydrogen fuel can be used for vehicle propulsion supporting the hydrogen economy development.
Exergy Analysis in Intensification of Sorption-enhanced Steam Methane Reforming for Clean Hydrogen Production: Comparative Study and Efficiency Optimisation
Feb 2024
Publication
Hydrogen has a key role to play in decarbonising industry and other sectors of society. It is important to develop low-carbon hydrogen production technologies that are cost-effective and energy-efficient. Sorption-enhanced steam methane reforming (SE-SMR) is a developing low-carbon (blue) hydrogen production process which enables combined hydrogen production and carbon capture. Despite a number of key benefits the process is yet to be fully realised in terms of efficiency. In this work a sorption-enhanced steam methane reforming process has been intensified via exergy analysis. Assessing the exergy efficiency of these processes is key to ensuring the effective deployment of low-carbon hydrogen production technologies. An exergy analysis was performed on an SE-SMR process and was then subsequently used to incorporate process improvements developing a process that has theoretically an extremely high CO2 capture rate of nearly 100 % whilst simultaneously demonstrating a high exergy efficiency (77.58 %) showcasing the potential of blue hydrogen as an effective tool to ensure decarbonisation in an energy-efficient manner.
Oxygen-rich Microporous Carbons with Exceptional Hydrogen Storage Capacity
Oct 2021
Publication
Porous carbons have been extensively investigated for hydrogen storage but to date appear to have an upper limit to their storage capacity. Here in an effort to circumvent this upper limit we explore the potential of oxygen-rich activated carbons. We describe cellulose acetate-derived carbons that combine high surface area (3800 m2 g−1 ) and pore volume (1.8 cm3 g−1 ) that arise almost entirely (>90%) from micropores with an oxygen-rich nature. The carbons exhibit enhanced gravimetric hydrogen uptake (8.1 wt% total and 7.0 wt% excess) at −196 °C and 20 bar rising to a total uptake of 8.9 wt% at 30 bar and exceptional volumetric uptake of 44 g l −1 at 20 bar and 48 g l −1 at 30 bar. At room temperature they store up to 0.8 wt% (excess) and 1.2 wt% (total) hydrogen at only 30 bar and their isosteric heat of hydrogen adsorption is above 10 kJ mol−1 .
No more items...