Indonesia
Engineered Seabed Sediment via Microwave-assisted NI2+ Substitution as a Catalyst for Double-Stage Pyrolysis of Plastic Waste: A Novel Approach to Methane Reforming and Enhanced Hydrogen Production
Jul 2025
Publication
This study engineered seabed sediment with microwave-assisted Ni2+ -substitution to enhance its composition and properties. The catalytic activity of microwave-assisted Ni2+ - substituted seabed sediment (Mwx%Ni-SB) was investigated in the two-stage pyrolysis of plastic waste for hydrogen production. The characterization reveals microwave irradiation synergistically modifies the physical properties (increasing functional groups reducing crystallinity) and electronic properties (modulating bandgap energy increasing electron density) of the Mwx%Ni-SB thereby improving methane reforming performance. Microwave treatment compresses and rearranges Ni2+ ions within the sediment lattice resulting in increased order and density and creating defects that enhance catalytic activity. GC-TCD analysis demonstrates that the use of catalysts in the first and second stages more than doubled hydrogen production (109.74%) compared to not using catalysts. Therefore increased Ni2+ substitution significantly reduced methane production by 49.04% while simultaneously boosting hydrogen production by 23.00%.
HYDRIDE4MOBILITY: An EU Project on Hydrogen Powered Forklift using Metal Hydrides for Hydrogen Storage and H2 Compression
Jan 2025
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Ivan Tolj,
José Bellosta von Colbe,
Roman V. Denys,
Moegamat Wafeeq Davids,
S. Nyallang Nyamsi,
Dana Swanepoel,
V.V. Berezovets,
I.Yu. Zavaliy,
Suwarno Suwarno,
I.J. Puszkiel,
Julian Jepsen,
Inês Abreu Ferreira,
Claudio Pistidda,
Yuanyuan Shang,
Sivakumar Pasupathi and
Vladimir Linkov
The EU Horizon2020 RISE project 778307 “Hydrogen fuelled utility and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) worked on the commercialization of hydrogen powered forklifts using metal hydride (MH) based hydrogen stores. The project consortium joined forces of 9 academic and industrial partners from 4 countries. The work program included a) Development of the materials for hydrogen storage and compression; b) Theoretical modelling and optimisation of the materials performance and system integration; c) Advanced fibre reinforced composite cylinder systems for H2 storage and compression; d) System validation. Materials development was focused on i) Zr/Ti-based Laves type high entropy alloys; ii) Mg-rich composite materials; iii) REMNiSn intermetallics; iv) Mg based materials for the hydrolysis process; v) Cost-efficient alloys. For the optimized AB2±x alloys the Zr/Ti content was optimized at A = Zr78-88Ti12–22 while B=Ni10Mn5.83VFe. These alloys provided a) Low hysteresis of hydrogen absorption-desorption; b) Excellent kinetics of charge and discharge; c) Tailored thermodynamics; d) Long cycle life. Zr0.85Ti0.15TM2 alloy provided a reversible H storage and electrochemical capacity of 1.6 wt% H and 450 mAh/g. The tanks development targeted: i) High efficiency of heat and hydrogen exchange; ii) Reduction of the weight and increasing the working H2 pressure; iii) Modelling testing and optimizing the H2 stores with fast performance. The system for power generation was validated at the Implats plant in a fuel cell powered forklift with on-board MH hydrogen storage and on-site H2 refuelling. The outcome on the HYDRIDE4MOBILITY project (2017–2024) (http://hydride4mobility.fesb.unist. hr) was presented in 58 publications.
Markov Decision Process for Current Density Optimization to Improve Hydrogen Production by Water Electrolysis
Jun 2025
Publication
Maximizing the hydrogen evolution reaction (HER) remains challenging due to its nonlinear kinetics and complex charge interactions within the electric double layer (EDL). This study introduces an adaptive current density control approach using a Markov Decision Process (MDP) to enhance HER performance in alkaline water electrolysis. The MDP algorithm dynamically adjusts current release timings from three capacitors connected to the cathode based on feedback from hydrogen concentration levels. Results show that this fluctuating control strategy is more effective than static or linearly increasing methods as it helps minimize overpotential reduce heat buildup and prevent hydrogen bubble accumulation. The MDP -optimized system achieved 7460 ppm in 60 minutes outperforms the control condition (5802 ppm ) produced under uncontrolled conditions. This work highlights a novel application of reinforcement learning to actively regulate electrochemical parameters offering a promising mechanism for improving electrolyzer efficiency.
Harnessing Unconventional Resources for Large-Scale Green Hydrogen Production: An Economic and Technological Analysis in Indonesia
Mar 2025
Publication
This study evaluates the potential for large-scale green hydrogen production in Indonesia by utilizing renewable energy sources connected on-grid namely 50 MWp of solar panels and 35 MW of wind turbines as well as a hybrid system combining both with a capacity of 45 MW at a grid cost of $100/kWh in five strategic cities: Banyuwangi Kupang BauBau Banjarmasin and Ambon. Using HOMER Pro software various integrated energy system scenarios involving ion exchange membrane electrolysis and alkaline water electrolysis. Additionally the study assumes a project lifespan of 15 years a discount rate of 6.6% and an inflation rate of 2.54%. The results showed that Bau-Bau recorded the highest hydrogen production reaching more than 1.9 million kilograms per year with the lowest levelized cost of hydrogen of $0.65/kg in Scheme 2. On the other hand Kupang shows high costs for most schemes with the levelized cost reaching $1.10/kg. In addition to hydrogen the study also evaluated oxygen production as a by-product of electrolysis. Bau-Bau and Kupang recorded the highest oxygen production with Scheme 6 achieving more than 15 million kilograms per year. The cost of electricity production varies between cities with Banyuwangi having the lowest cost of electricity for wind energy at $80.9/MWh. The net present cost for renewable energy systems in Banyuwangi was $35.4 million for wind turbines while the photovoltaic+wind combination showed the highest cost at $116 million. These findings emphasize the importance of hybrid systems in improving hydrogen production efficiency and supporting sustainable energy transition in Indonesia.
Hydrogen's Potential and Policy Pathways for Indonesia's Energy Transition: The Actor-network Analysis
Mar 2025
Publication
This research examines potential uses of hydrogen as an alternative energy source in Indonesia. Hydrogen presents a more environmentally friendly energy alternative with markedly reduced greenhouse gas emissions leading the Indonesian government to align its interests with the worldwide excitement for hydrogen-based energy transitions within the sustainable development context. Nevertheless despite its intriguing potential as an alternative fuel for transportation industry and power generation pilot programs have demonstrated that hydrogen energy remains expensive and demands substantial advancements in technology. This study used a qualitative methodology incorporating documentary analysis semi-structured interviews and focus group discussions within the actor-network theory framework aimed to investigate the current positioning of hydrogen energy in Indonesia’s policy pathways and to examine its potential and challenge. The findings indicate two primary insights: firstly Indonesia’s energy transformation is presently centered on formulating action plans and regulatory frameworks with hydrogen seen as one of the proposed alternatives. The investigation of hydrogen’s current progress through the actor-network theory framework has yielded two separate actor networks: the proponent network consisting of the national government and the national oil company and the opposing network which encompasses academics businesses and industries.
Hydrogen Demand Estimation for Sustainable Transport: A Comprehensive Review
Aug 2025
Publication
Hydrogen demand estimation for various transport modes supports policy and decision-making for the transition towards a sustainable low-carbon future transport system. It is one of the major factors that determine infrastructure construction production and distribution cost optimisation. Researchers have developed various methods for modelling hydrogen demand and its geographical distribution each based on different sets of predictor variables. This paper systematically reviews these methods and examines the key variables used in hydrogen demand estimation including the number of vehicles travel distance penetration rate and fuel economy. It emphasises the role of spatial analysis in uncovering the geographical distribution of hydrogen demand providing insights for strategic infrastructure planning. Furthermore the discussion underscores the significance of minimising uncertainty by incorporating multiple scenarios into the model thereby accommodating the dynamic nature of hydrogen adoption in transport. The necessity for multi-temporal estimation which accounts for the changing nature of hydrogen demand over time is also highlighted. In addition this paper advocates for a holistic approach to hydrogen demand estimation integrating spatiotemporal analysis. Future research could enhance the reliability of hydrogen demand models by addressing uncertainty through advanced modelling techniques to improve accuracy and spatial-temporal resolution.
Effect of Hydrogen Co-Firing with Natural Gas on Thermal Efficiency and CO2 Emissions in Gas Turbine Power Plant
Mar 2025
Publication
The Indonesian government has established an energy transition policy for decarbonization including the target of utilizing hydrogen for power generation through a co-firing scheme. Several studies indicate that hydrogen co-firing in gas-fired power plants can reduce CO2 emissions while improving efficiency. This study develops a simulation model for hydrogen co-firing in an M701F gas turbine at the Cilegon power plant using Aspen HYSYS. The impact of different hydrogen volume fractions (5–30%) on thermal efficiency and CO2 emissions is analyzed under varying operational loads (100% 75% and 50%). The simulation results show an increase in thermal efficiency with each 5% increment in the hydrogen fraction averaging 0.32% at 100% load 0.34% at 75% load and 0.37% at 50% load. The hourly CO2 emission rate decreased by an average of 2.16% across all operational load variations for every 5% increase in the hydrogen fraction. Meanwhile the average reduction in CO2 emission intensity at the 100% 75% and 50% operational loads was 0.017 0.019 and 0.023 kg CO2/kWh respectively.
Mapping Hydrogen Demand for Heavy-duty Vehicles: A Spatial Disaggregation Approach
Jul 2025
Publication
Hydrogen is the key to decarbonising heavy-duty transport. Understanding the distribution of hydrogen demand is crucial for effective planning and development of infrastructure. However current data on future hydrogen demand is often coarse and aggregated limiting its utility for detailed analysis and decision-making. This study developed a spatial disaggregation approach to estimating hydrogen demand for heavy-duty trucks and mapping the spatial distribution of hydrogen demand across multiple scales in Australia. By integrating spatial datasets with economic factors market penetration rates and technical specifications of hydrogen fuel cell vehicles the approach disaggregates the projected demand into specific demand centres allowing for the mapping of regional hydrogen demand patterns and the identification of key centres of hydrogen demand based on heavy-duty truck traffic flow projections under different scenarios. This approach was applied to Australia and the findings offered valuable insights that can help policymakers and stakeholders plan and develop hydrogen infrastructure such as optimising hydrogen refuelling station locations and support the transition to a low-carbon heavy-duty transport sector.
No more items...